skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Beyond the Signs: Nonparametric tensor completion via sign series.
We consider the problem of tensor estimation from noisy observations with possibly missing entries. A nonparametric approach to tensor completion is developed based on a new model which we coin as sign representable tensors. The model represents the signal tensor of interest using a series of structured sign tensors. Unlike earlier methods, the sign series representation effectively addresses both low- and high-rank signals, while encompassing many existing tensor models— including CP models, Tucker models, single index models, structured tensors with repeating entries—as special cases. We provably reduce the tensor estimation problem to a series of structured classification tasks, and we develop a learning reduction machinery to empower existing low-rank tensor algorithms for more challenging high-rank estimation. Excess risk bounds, estimation errors, and sample complexities are established. We demonstrate the outperformance of our approach over previous methods on two datasets, one on human brain connectivity networks and the other on topic data mining.  more » « less
Award ID(s):
1915978
PAR ID:
10345825
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 Advances in Neural Information Processing Systems 34 (NeurIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study a noisy tensor completion problem of broad practical interest, namely, the reconstruction of a low-rank tensor from highly incomplete and randomly corrupted observations of its entries. Whereas a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications or come with suboptimal statistical guarantees. Focusing on “incoherent” and well-conditioned tensors of a constant canonical polyadic rank, we propose a two-stage nonconvex algorithm—(vanilla) gradient descent following a rough initialization—that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all individual tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e., minimal sample complexity and optimal estimation accuracy). The estimation errors are evenly spread out across all entries, thus achieving optimal [Formula: see text] statistical accuracy. We also discuss how to extend our approach to accommodate asymmetric tensors. The insight conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  2. We study a completion problem of broad practical interest: the reconstruction of a low-rank symmetric tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications, or come with sub-optimal statistical guarantees. Focusing on incoherent'' and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm --- (vanilla) gradient descent following a rough initialization --- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all low-rank tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e. minimal sample complexity and optimal statistical accuracy). The insights conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  3. We study a completion problem of broad practical interest: the reconstruction of a low-rank symmetric tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications, or come with sub-optimal statistical guarantees. Focusing on incoherent'' and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm --- (vanilla) gradient descent following a rough initialization --- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all low-rank tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e. minimal sample complexity and optimal statistical accuracy). The insights conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  4. In this paper, we develop a novel procedure for low-rank tensor regression, namely Importance Sketching Low-rank Estimation for Tensors (ISLET). The central idea behind ISLET is importance sketching, i.e., carefully designed sketches based on both the responses and low-dimensional structure of the parameter of interest. We show that the proposed method is sharply minimax optimal in terms of the mean-squared error under low-rank Tucker assumptions and under the randomized Gaussian ensemble design. In addition, if a tensor is low-rank with group sparsity, our procedure also achieves minimax optimality. Further, we show through numerical study that ISLET achieves comparable or better mean-squared error performance to existing state-of-the-art methods while having substantial storage and run-time advantages including capabilities for parallel and distributed computing. In particular, our procedure performs reliable estimation with tensors of dimension $p = O(10^8)$ and is 1 or 2 orders of magnitude faster than baseline methods. 
    more » « less
  5. Abstract

    There exist linear relations among tensor entries of low rank tensors. These linear relations can be expressed by multi-linear polynomials, which are called generating polynomials. We use generating polynomials to compute tensor rank decompositions and low rank tensor approximations. We prove that this gives a quasi-optimal low rank tensor approximation if the given tensor is sufficiently close to a low rank one.

     
    more » « less