skip to main content


Title: Design of an Assistive Robot for Infant Mobility Interventions
Childhood ambulatory disabilities detract from not only the physical development, but also the social engagement of young children. Commercial mobility aids can help improve the autonomy of children with disabilities, but affordability issues, policy challenges, and uncertainty about training standards limit early use of these devices. In this paper, we build on affordable research-grade mobility aids for young children and consider how to design and evaluate an assistive robot that can support the use of these devices. With young children’s contingency learning abilities in mind, we designed an assistive mobile robot capable of supplying age-appropriate light, sound, and bubble rewards. We conducted a first evaluation of the robot’s ability to support driving practice with N = 5 typically developing infants. The results indicate mixed success of the robot rewards; driving distances uniformly tended to fall over the course of the study, but children did tend to look at the robot. In a second exploratory study involving N = 6 children in free ambulatory play, we see clearer differences in gaze and behavior from the introduction of an assistive robot. Generally, this research can inform others interested in assistive robotic interventions for young children.  more » « less
Award ID(s):
2024950
NSF-PAR ID:
10294133
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)
Page Range / eLocation ID:
604 to 611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robot-mediated interventions are one promising and novel approach for encouraging motor exploration in young children, but knowledge about the effectiveness of toy-like features for child-robot interaction is limited. We were interested in understanding the characteristics of current toys to inform the design of interactive abilities for assistive robots. This work first provides a systematic review of toy characteristics in n=154 Fisher-Price products and then analyzes the effectiveness of common and uncommon toy-like behaviors from our custom assistive robot. Toy review results showed that light and sound features were significantly more common than bubbles, wheels, and self-propulsion. Exploratory play sessions with our assistive robot showed that bubbles were significantly more successful at encouraging child motion than other robot behaviors. Further, all studied robot behaviors demonstrated the capability to encourage child motion. The products of this work can inform the efforts of human-robot interaction and child development experts who study child mobility interventions. 
    more » « less
  2. Background: Play is critical for children’s physical, cognitive, and social development. Technology-based toys like robots are especially of interest to children. This pilot study explores the affordances of the play area provided by developmentally appropriate toys and a mobile socially assistive robot (SAR). The objective of this study is to assess the role of the SAR on physical activity, play behavior, and toy-use behavior of children during free play. Methods: Six children (5 females, M age = 3.6 ± 1.9 years) participated in the majority of our pilot study’s seven 30-minute-long weekly play sessions (4 baseline and 3 intervention). During baseline sessions, the SAR was powered off. During intervention sessions, the SAR was teleoperated to move in the play area and offered rewards of lights, sounds, and bubbles to children. Thirty-minute videos of the play sessions were annotated using a momentary time sampling observation system. Mean percentage of time spent in behaviors of interest in baseline and intervention sessions were calculated. Paired-Wilcoxon signed rank tests were conducted to assess differences between baseline and intervention sessions. Results: There was a significant increase in children’s standing (∼15%; Z = −2.09; p = 0.037) and a tendency for less time sitting (∼19%; Z = −1.89; p = 0.059) in the intervention phase as compared to the baseline phase. There was also a significant decrease (∼4.5%, Z = −2.70; p = 0.007) in peer interaction play and a tendency for greater (∼4.5%, Z = −1.89; p = 0.059) interaction with adults in the intervention phase as compared to the baseline phase. There was a significant increase in children’s interaction with the robot (∼11.5%, Z = −2.52; p = 0.012) in the intervention phase as compared to the baseline phase. Conclusion: These results may indicate that a mobile SAR provides affordances through rewards that elicit children’s interaction with the SAR and more time standing in free play. This pilot study lays a foundation for exploring the role of SARs in inclusive play environments for children with and without mobility disabilities in real-world settings like day-care centers and preschools. 
    more » « less
  3. Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations. 
    more » « less
  4. Abstract

    Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations.

     
    more » « less
  5. More than 1 billion people in the world are estimated to experience significant disability. These disabilities can impact people's ability to independently conduct activities of daily living, including ambulating, eating, dressing, taking care of personal hygiene, and more. Mobile and manipulator robots, which can move about human environments and physically interact with objects and people, have the potential to assist people with disabilities in activities of daily living. Although the vision of physically assistive robots has motivated research across subfields of robotics for decades, such robots have only recently become feasible in terms of capabilities, safety, and price. More and more research involves end-to-end robotic systems that interact with people with disabilities in real-world settings. In this article, we survey papers about physically assistive robots intended for people with disabilities from top conferences and journals in robotics, human–computer interactions, and accessible technology, to identify the general trends and research methodologies. We then dive into three specific research themes—interaction interfaces, levels of autonomy, and adaptation—and present frameworks for how these themes manifest across physically assistive robot research. We conclude with directions for future research. 
    more » « less