skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proof-of-Concept Designs for the Assembly of Modular, Dynamic Tensegrities into Easily Deployable Structures
Dynamic tensegrity robots are inspired by tensegrity structures in architecture; arrangements of rigid rods and flexible elements allow the robots to deform. This work proposes the use of multiple, modular, tensegrity robots that can move and compliantly connect to assemble larger, compliant, lightweight, strong structures and scaffolding. The focus is on proof-of-concept designs for the modular robots themselves and their docking mechanisms, which can allow the easy deployment of structures in unstructured environments. These mechanisms include (electro)magnets to allow each individual robot to connect and disconnect on cue. An exciting direction is the design of specific module and structure designs to fit the mission at hand. For example, this work highlights how the considered three bar structures could stack to form a column or deform on one side to create an arch. A critical component of future work will involve the development of algorithms for automatic design and layout of modules in structures.  more » « less
Award ID(s):
1956027
PAR ID:
10294210
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASCE Earth and Space Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robustness, compactness, and portability of tensegrity robots make them suitable candidates for locomotion on unknown terrains. Despite these advantages, challenges remain relating to simplicity of fabrication and locomotion. The paper introduces a design solution for fabricating tensegrity robots of varying morphologies with modular components created using rapid prototyping techniques, including 3D printing and laser-cutting. % It explores different robot morphologies that attempt to balance structural complexity while facilitating smooth locomotion. The techniques are utilized to fabricate simple tensegrity structures, followed by tensegrity robots in icosahedron and half-circle arc morphologies. Locomotion strategies for such robots involve altering of the position of center-of-mass to induce `tip-over'. Furthermore, the design of curved links of tensegrity mechanisms facilitates continuous change in the point of contact (along the curve) as compared to piece-wise continuous in the traditional straight links (point contact) which induces impulse reaction forces during locomotion. The resulting two tensegrity robots - six-straight strut icosahedron and two half-circle arc morphology - achieve locomotion through internal mass-shifting utilizing the presented modular mass-shifting mechanism. The curve-link tensegrity robot demonstrates smooth locomotion along with folding-unfolding capability. 
    more » « less
  2. Tensegrity structures made from rigid rods and elastic cables have unique characteristics, such as being lightweight, easy to fabricate, and high load-carrying to weight capacity. In this article, we leverage tensegrity structures as wheels for a mobile robot that can actively change its shape by expanding or collapsing the wheels. Besides the shape-changing capability, using tensegrity as wheels offers several advantages over traditional wheels of similar sizes, such as a shock-absorbing capability without added mass since tensegrity wheels are both lightweight and highly compliant. We show that a robot with two icosahedron tensegrity wheels can reduce its width from 400 to 180 mm, and simultaneously, increase its height from 75 to 95 mm by changing the expanded tensegrity wheels to collapsed disk-like ones. The tensegrity wheels enable the robot to overcome steps with heights up to 110 and 150 mm with the expanded and collapsed configuration, respectively. We establish design guidelines for robots with tensegrity wheels by analyzing the maximum step height that can be overcome by the robot and the force required to collapse the wheel. The robot can also jump onto obstacles up to 300-mm high with a bistable mechanism that can gradually store but quickly release energy. We demonstrate the robot's locomotion capability in indoor and outdoor environments, including various natural terrains, like sand, grass, rocks, ice, and snow. Our results suggest that using tensegrity structures as wheels for mobile robots can enhance their capability to overcome obstacles, traverse challenging terrains, and survive falls from heights. When combined with other locomotion modes (e.g., jumping), such shape-changing robots can have broad applications for search-and-rescue after disasters or surveillance and monitoring in unstructured environments. 
    more » « less
  3. Micro-, and milli-scale robots have been of great R&D interest, due to their ability to accomplish difficult tasks such as minimally invasive diagnosis and treatment for human bodies, and underground or deep-sea tests for environment monitoring. A good solution to this design need is a multi-unit deployable tensegrity microrobot. The microrobot can be folded to only 15% of its deployed length, so as to easily enter a desired working area with a small entrance. When deployed, the tensegrity body of the robot displays lightweight and high stiffness to sustain loads and prevent damage when burrowing through tightly packed tissues or high-pressure environments. In this work, topology, initial configuration and locomotion of a deployable tensegrity microrobot are determined optimally. Based on the design, a centimeter-scale prototype is manufactured by using a fused deposition modelling advanced additive manufacturing or 3-D printing system for proof of concept. As shown in experimental results, the deployable tensegrity microrobot prototype designed and manufactured can achieve an extremely high folding ratio, while be lightweight and rigid. The locomotion design, that mimics a crawling motion of an earthworm, is proved to be efficient by the prototype equipped with stepper motors, actuation cables, control boards and a braking system. 
    more » « less
  4. If you ever did the egg drop challenge, you know it is hard to build something that can protect a fragile egg from crashing into the ground and breaking. Engineers are building soft robots called tensegrity robots, which are designed to survive harsh crashes. The word tensegrity comes from “tension” and “integrity”. It means the robot is made of stiff bars held together with stretchy cables. This flexible structure helps a tensegrity robot absorb the impact from crashes. Someday, these robots might be used to explore dangerous places like deep caves or other planets. These robots could fall off cliffs or into craters. Right now, engineers are making tensegrity robots better and easier to control. In this article, we will explain how tensegrity robots work. We will discuss their advantages, their disadvantages, and what they can be used for. 
    more » « less
  5. Tensegrity robots are composed of rigid struts and flexible cables. They constitute an emerging class of hybrid rigid-soft robotic systems and are promising systems for a wide array of applications, ranging from locomotion to assembly. They are difficult to control and model accurately, however, due to their compliance and high number of degrees of freedom. To address this issue, prior work has introduced a differentiable physics engine designed for tensegrity robots based on first principles. In contrast, this work proposes the use of graph neural networks to model contact dynamics over a graph representation of tensegrity robots, which leverages their natural graph-like cable connectivity between end caps of rigid rods. This learned simulator can accurately model 3-bar and 6-bar tensegrity robot dynamics in simulation-to-simulation experiments where MuJoCo is used as the ground truth. It can also achieve higher accuracy than the previous differentiable engine for a real 3-bar tensegrity robot, for which the robot state is only partially observable. When compared against direct applications of recent mesh-based graph neural network simulators, the proposed approach is computationally more efficient, both for training and inference, while achieving higher accuracy. Code and data are available at https://github.com/nchen9191/tensegrity_gnn_simulator_public 
    more » « less