skip to main content


This content will become publicly available on August 1, 2024

Title: A Shape-Changing Wheeling and Jumping Robot Using Tensegrity Wheels and Bistable Mechanism
Tensegrity structures made from rigid rods and elastic cables have unique characteristics, such as being lightweight, easy to fabricate, and high load-carrying to weight capacity. In this article, we leverage tensegrity structures as wheels for a mobile robot that can actively change its shape by expanding or collapsing the wheels. Besides the shape-changing capability, using tensegrity as wheels offers several advantages over traditional wheels of similar sizes, such as a shock-absorbing capability without added mass since tensegrity wheels are both lightweight and highly compliant. We show that a robot with two icosahedron tensegrity wheels can reduce its width from 400 to 180 mm, and simultaneously, increase its height from 75 to 95 mm by changing the expanded tensegrity wheels to collapsed disk-like ones. The tensegrity wheels enable the robot to overcome steps with heights up to 110 and 150 mm with the expanded and collapsed configuration, respectively. We establish design guidelines for robots with tensegrity wheels by analyzing the maximum step height that can be overcome by the robot and the force required to collapse the wheel. The robot can also jump onto obstacles up to 300-mm high with a bistable mechanism that can gradually store but quickly release energy. We demonstrate the robot's locomotion capability in indoor and outdoor environments, including various natural terrains, like sand, grass, rocks, ice, and snow. Our results suggest that using tensegrity structures as wheels for mobile robots can enhance their capability to overcome obstacles, traverse challenging terrains, and survive falls from heights. When combined with other locomotion modes (e.g., jumping), such shape-changing robots can have broad applications for search-and-rescue after disasters or surveillance and monitoring in unstructured environments.  more » « less
Award ID(s):
2126039
NSF-PAR ID:
10477132
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE/ASME Transactions on Mechatronics
Volume:
28
Issue:
4
ISSN:
1083-4435
Page Range / eLocation ID:
2073 to 2082
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft robots are theoretically well-suited to rescue and exploration applications where their flexibility allows for the traversal of highly cluttered environments. However, most existing mobile soft robots are not fast or powerful enough to effectively traverse three dimensional environments. In this paper, we introduce a new mobile robot with a continuously deformable slender body structure, the SalamanderBot, which combines the flexibility and maneuverability of soft robots, with the speed and power of traditional mobile robots. It consists of a cable-driven bellows-like origami module based on the Yoshimura crease pattern mounted between sets of powered wheels. The origami structure allows the body to deform as necessary to adapt to complex environments and terrains, while the wheels allow the robot to reach speeds of up to 303.1 mm/s (2.05 body-length/s). Salamanderbot can climb up to 60-degree slopes and perform sharp turns with a minimum turning radius of 79.9 mm (0.54 body-length). 
    more » « less
  2. Abstract

    This paper introduces an innovative and streamlined design of a robot, resembling a bicycle, created to effectively inspect a wide range of ferromagnetic structures, even those with intricate shapes. The key highlight of this robot lies in its mechanical simplicity coupled with remarkable agility. The locomotion strategy hinges on the arrangement of two magnetic wheels in a configuration akin to a bicycle, augmented by two independent steering actuators. This configuration grants the robot the exceptional ability to move in multiple directions. Moreover, the robot employs a reciprocating mechanism that allows it to alter its shape, thereby surmounting obstacles effortlessly. An inherent trait of the robot is its innate adaptability to uneven and intricate surfaces on steel structures, facilitated by a dynamic joint. To underscore its practicality, the robot's application is demonstrated through the utilization of an ultrasonic sensor for gauging steel thickness, coupled with a pragmatic deployment mechanism. By integrating a defect detection model based on deep learning, the robot showcases its proficiency in automatically identifying and pinpointing areas of rust on steel surfaces. The paper undertakes a thorough analysis, encompassing robot kinematics, adhesive force, potential sliding and turn‐over scenarios, and motor power requirements. These analyses collectively validate the stability and robustness of the proposed design. Notably, the theoretical calculations established in this study serve as a valuable blueprint for developing future robots tailored for climbing steel structures. To enhance its inspection capabilities, the robot is equipped with a camera that employs deep learning algorithms to detect rust visually. The paper substantiates its claims with empirical evidence, sharing results from extensive experiments and real‐world deployments on diverse steel bridges, situated in both Nevada and Georgia. These tests comprehensively affirm the robot's proficiency in adhering to surfaces, navigating challenging terrains, and executing thorough inspections. A comprehensive visual representation of the robot's trials and field deployments is presented in videos accessible at the following links:https://youtu.be/Qdh1oz_oxiQ andhttps://youtu.be/vFFq79O49dM.

     
    more » « less
  3. Abstract Legged robots have a unique capability of traversing rough terrains and negotiating cluttered environments. Recent control development of legged robots has enabled robust locomotion on rough terrains. However, such approaches mainly focus on maintaining balance for the robot body. In this work, we are interested in leveraging the whole body of the robot to pass through a permeable obstacle (e.g., a small confined opening) with height, width, and terrain constraints. This paper presents a planning framework for legged robots manipulating their body and legs to perform collision-free locomotion through a permeable obstacle. The planner incorporates quadrupedal gait constraint, biasing scheme, and safety margin for the simultaneous body and foothold motion planning. We perform informed sampling for the body poses and swing foot position based on the gait constraint while ensuring stability and collision avoidance. The footholds are planned based on the terrain and the contact constraint. We also integrate the planner with robot control to execute the planned trajectory successfully. We validated our approach in high-fidelity simulation and hardware experiments on the Unitree A1 robot navigating through different representative permeable obstacles. 
    more » « less
  4. Robustness, compactness, and portability of tensegrity robots make them suitable candidates for locomotion on unknown terrains. Despite these advantages, challenges remain relating to simplicity of fabrication and locomotion. The paper introduces a design solution for fabricating tensegrity robots of varying morphologies with modular components created using rapid prototyping techniques, including 3D printing and laser-cutting. % It explores different robot morphologies that attempt to balance structural complexity while facilitating smooth locomotion. The techniques are utilized to fabricate simple tensegrity structures, followed by tensegrity robots in icosahedron and half-circle arc morphologies. Locomotion strategies for such robots involve altering of the position of center-of-mass to induce `tip-over'. Furthermore, the design of curved links of tensegrity mechanisms facilitates continuous change in the point of contact (along the curve) as compared to piece-wise continuous in the traditional straight links (point contact) which induces impulse reaction forces during locomotion. The resulting two tensegrity robots - six-straight strut icosahedron and two half-circle arc morphology - achieve locomotion through internal mass-shifting utilizing the presented modular mass-shifting mechanism. The curve-link tensegrity robot demonstrates smooth locomotion along with folding-unfolding capability. 
    more » « less
  5. null (Ed.)
    Many soft robots are capable of significantly changing their shape, an ability that can offer advantages in many applications. For instance, such a robot can flatten its body to fit under small gaps and expand to move over large obstacles. Further, because these shape changes are usually driven by a pressurized fluid, if they act over a large area, they have the potential to apply large forces to the world. However, when these same shape changes are used for the locomotion of an untethered robot, they tend to result in slow forward movement. Here we present a hybrid soft-rigid elongated-sphere robot that decouples shape change from locomotion. Pairing a compliant, inflatable outer skin, which changes volume by 15x to both fit under and roll over obstacles and can lift objects up to 30 kg, with a wheeled internal carriage, we obtain relatively fast locomotion. A new two-sided controllable adhesive between the internal carriage and the skin enables the carriage to climb vertically inside the skin, allowing the robot to climb external obstacles. We present the design of the robot, simple modeling of its behavior, and experimental testing. Our work advances the area of hybrid soft-rigid robotics by demonstrating how leveraging the strengths of both soft and rigid systems can have quantifiable performance benefits. 
    more » « less