skip to main content

Title: A circular polarization survey for radio stars with the Australian SKA Pathfinder
ABSTRACT We present results from a circular polarization survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of δ = +41○ being conducted with the Australian Square Kilometre Array Pathfinder telescope (ASKAP) over a 288 MHz wide band centred on 887.5 MHz. The data we analyse include Stokes I and V polarization products to an RMS sensitivity of 250 μJy PSF−1. We searched RACS for sources with fractional circular polarization above 6 per cent, and after excluding imaging artefacts, polarization leakage, and known pulsars we identified radio emission coincident with 33 known stars. These range from M-dwarfs through to magnetic, chemically peculiar A- and B-type stars. Some of these are well-known radio stars such as YZ CMi and CU Vir, but 23 have no previous radio detections. We report the flux density and derived brightness temperature of these detections and discuss the nature of the radio emission. We also discuss the implications of our results for the population statistics of radio stars in the context of future ASKAP and Square Kilometre Array surveys.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
5438 to 5454
Sponsoring Org:
National Science Foundation
More Like this

    Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission.

  2. Abstract We report the discovery of a highly circularly polarized, variable, steep-spectrum pulsar in the Australian Square Kilometre Array Pathfinder (ASKAP) Variables and Slow Transients (VAST) survey. The pulsar is located about 1° from the center of the Large Magellanic Cloud, and has a significant fractional circular polarization of ∼20%. We discovered pulsations with a period of 322.5 ms, dispersion measure (DM) of 157.5 pc cm −3 , and rotation measure (RM) of +456 rad m −2 using observations from the MeerKAT and the Parkes telescopes. This DM firmly places the source, PSR J0523−7125, in the Large Magellanic Cloud (LMC). This RM is extreme compared to other pulsars in the LMC (more than twice that of the largest previously reported one). The average flux density of ∼1 mJy at 1400 MHz and ∼25 mJy at 400 MHz places it among the most luminous radio pulsars known. It likely evaded previous discovery because of its very steep radio spectrum (spectral index α ≈ −3, where S ν ∝ ν α ) and broad pulse profile (duty cycle ≳35%). We discuss implications for searches for unusual radio sources in continuum images, as well as extragalactic pulsars in the Magellanic Clouds and beyond.more »Our result highlighted the possibility of identifying pulsars, especially extreme pulsars, from radio continuum images. Future large-scale radio surveys will give us an unprecedented opportunity to discover more pulsars and potentially the most distant pulsars beyond the Magellanic Clouds.« less
  3. ABSTRACT We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0 × 30.0 arcsec2 and 16.3 × 15.1 arcsec2, respectively. The median root mean square (RMS) noise values are 186 $\mu$Jy beam−1 (960 MHz) and 165 $\mu$Jy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESPmore »survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies.« less
  4. Abstract We discuss observational strategies to detect prompt bursts associated with gravitational wave (GW) events using the Australian Square Kilometre Array Pathfinder (ASKAP). Many theoretical models of binary neutron stars mergers predict that bright, prompt radio emission would accompany the merger. The detection of such prompt emission would greatly improve our knowledge of the physical conditions, environment, and location of the merger. However, searches for prompt emission are complicated by the relatively poor localisation for GW events, with the 90% credible region reaching hundreds or even thousands of square degrees. Operating in fly’s eye mode, the ASKAP field of view can reach $\sim1\,000$ deg $^2$ at $\sim$ $888\,{\rm MHz}$ . This potentially allows observers to cover most of the 90% credible region quickly enough to detect prompt emission. We use skymaps for GW170817 and GW190814 from LIGO/Virgo’s third observing run to simulate the probability of detecting prompt emission for GW events in the upcoming fourth observing run. With only alerts released after merger, we find it difficult to slew the telescope sufficiently quickly as to capture any prompt emission. However, with the addition of alerts released before merger by negative-latency pipelines, we find that it should be possible to searchmore »for nearby, bright prompt fast radio burst-like emission from GW events. Nonetheless, the rates are low: we would expect to observe $\sim$ 0.012 events during the fourth observing run, assuming that the prompt emission is emitted microseconds around the merger.« less
  5. Abstract The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two aremore »active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.« less