Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first, the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation technique, such as the ensemble Kalman filter, is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine, a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto–Sivashinsky system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.
more »
« less
EFFICIENT COMPUTATION OF COORDINATE-FREE MODELS OF FLAME FRONTS
Abstract We present an efficient, accurate computational method for a coordinate-free model of flame front propagation of Frankel and Sivashinsky. This model allows for overturned flames fronts, in contrast to weakly nonlinear models such as the Kuramoto–Sivashinsky equation. The numerical procedure adapts the method of Hou, Lowengrub and Shelley, derived for vortex sheets, to this model. The result is a nonstiff, highly accurate solver which can handle fully nonlinear, overturned interfaces, with similar computational expense to methods for weakly nonlinear models. We apply this solver both to simulate overturned flame fronts and to compare the accuracy of Kuramoto–Sivashinsky and coordinate-free models in the appropriate limit.
more »
« less
- Award ID(s):
- 1907684
- PAR ID:
- 10294386
- Date Published:
- Journal Name:
- The ANZIAM Journal
- Volume:
- 63
- Issue:
- 1
- ISSN:
- 1446-1811
- Page Range / eLocation ID:
- 58 to 69
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work we study the asymptotic consistency of the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) in the identification of differential equations from noisy samples of solutions. We prove that the WSINDy estimator is unconditionally asymptotically consistent for a wide class of models that includes the Navier–Stokes, Kuramoto–Sivashinsky and Sine–Gordon equations. We thus provide a mathematically rigorous explanation for the observed robustness to noise of weak-form equation learning. Conversely, we also show that, in general, the WSINDy estimator is only conditionally asymptotically consistent, yielding discovery of spurious terms with probability one if the noise level exceeds a critical threshold $$\sigma _{c}$$. We provide explicit bounds on $$\sigma _{c}$$ in the case of Gaussian white noise and we explicitly characterize the spurious terms that arise in the case of trigonometric and/or polynomial libraries. Furthermore, we show that, if the data is suitably denoised (a simple moving average filter is sufficient), then asymptotic consistency is recovered for models with locally-Lipschitz, polynomial-growth nonlinearities. Our results reveal important aspects of weak-form equation learning, which may be used to improve future algorithms. We demonstrate our findings numerically using the Lorenz system, the cubic oscillator, a viscous Burgers-growth model and a Kuramoto–Sivashinsky-type high-order PDE.more » « less
-
We introduce three new nonlinear continuous data assimilation algorithms. These models are compared with the linear continuous data assimilation algorithm introduced by Azouani, Olson, and Titi (AOT). As a proof-of-concept for these models, we computationally investigate these algorithms in the context of the 1D Kuramoto-Sivashinsky equations. We observe that the nonlinear models experience super-exponential convergence in time, and converge to machine precision significantly faster than the linear AOT algorithm in our tests. For both simplicity and completeness, we provide the key analysis of the exponential-in-time convergence in the linear case.more » « less
-
Abstract This paper identifies and explains particular differences and properties of adjoint-free iterative ensemble methods initially developed for parameter estimation in petroleum models. The aim is to demonstrate the methods’ potential for sequential data assimilation in coupled and multiscale unstable dynamical systems. For this study, we have introduced a new nonlinear and coupled multiscale model based on two Kuramoto–Sivashinsky equations operating on different scales where a coupling term relaxes the two model variables toward each other. This model provides a convenient testbed for studying data assimilation in highly nonlinear and coupled multiscale systems. We show that the model coupling leads to cross covariance between the two models’ variables, allowing for a combined update of both models. The measurements of one model’s variable will also influence the other and contribute to a more consistent estimate. Second, the new model allows us to examine the properties of iterative ensemble smoothers and assimilation updates over finite-length assimilation windows. We discuss the impact of varying the assimilation windows’ length relative to the model’s predictability time scale. Furthermore, we show that iterative ensemble smoothers significantly improve the solution’s accuracy compared to the standard ensemble Kalman filter update. Results and discussion provide an enhanced understanding of the ensemble methods’ potential implementation and use in operational weather- and climate-prediction systems.more » « less
-
Abstract Numerical modeling of radiative transfer in nongray reacting media is a challenging problem in computational science and engineering. The choice of radiation models is important for accurate and efficient high-fidelity combustion simulations. Different applications usually involve different degrees of complexity, so there is yet no consensus in the community. In this paper, the performance of different radiative transfer equation (RTE) solvers and spectral models for a turbulent piloted methane/air jet flame are studied. The flame is scaled from the Sandia Flame D with a Reynolds number of 22,400. Three classes of RTE solvers, namely the discrete ordinates method, spherical harmonics method, and Monte Carlo method, are examined. The spectral models include the Planck-mean model, the full-spectrum k-distribution (FSK) method, and the line-by-line (LBL) calculation. The performances of different radiation models in terms of accuracy and computational cost are benchmarked. The results have shown that both RTE solvers and spectral models are critical in the prediction of radiative heat source terms for this jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty are discussed in detail. The results can be used as a reference for radiation model selection in combustor simulations.more » « less
An official website of the United States government

