skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formation of monomeric Sn( ii ) and Sn( iv ) perfluoropinacolate complexes and their characterization by 119 Sn Mössbauer and 119 Sn NMR spectroscopies
The synthesis and characterization of a series of Sn( ii ) and Sn( iv ) complexes supported by the highly electron-withdrawing dianionic perfluoropinacolate (pin F ) ligand are reported herein. Three analogs of [Sn IV (pin F ) 3 ] 2− with NEt 3 H + ( 1 ), K + ( 2 ), and {K(18C6)} + ( 3 ) counter cations and two analogs of [Sn II (pin F ) 2 ] 2− with K + ( 4 ) and {K(15C5) 2 } + ( 5 ) counter cations were prepared and characterized by standard analytical methods, single-crystal X-ray diffraction, and 119 Sn Mössbauer and NMR spectroscopies. The six-coordinate Sn IV (pin F ) complexes display 119 Sn NMR resonances and 119 Sn Mössbauer spectra similar to SnO 2 (cassiterite). In contrast, the four-coordinate Sn II (pin F ) complexes, featuring a stereochemically-active lone pair, possess low 119 Sn NMR chemical shifts and relatively high quadrupolar splitting. Furthermore, the Sn( ii ) complexes are unreactive towards both Lewis bases (pyridine, NEt 3 ) and acids (BX 3 , Et 3 NH + ). Calculations confirm that the Sn( ii ) lone pair is localized within the 5s orbital and reveal that the Sn 5p x LUMO is energetically inaccessible, which effectively abates reactivity.  more » « less
Award ID(s):
1800313
PAR ID:
10294711
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
49
Issue:
39
ISSN:
1477-9226
Page Range / eLocation ID:
13773 to 13785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is considerable interest in MnOH x moieties, particularly in the stepwise changes in those O–H bonds in tandem with Mn oxidation state changes. The reactivity of aquo-derived ligands, {MOH x }, is also heavily influenced by the electronic character of the other ligands. Despite the prevalence of oxygen coordination in biological systems, preparation of mononuclear Mn complexes of this type with all O-donors is rare. Herein, we report several Mn complexes with perfluoropinacolate (pin F ) 2− including the first example of a crystallographically characterized mononuclear {Mn( iii )OH} with all O-donors, K 2 [Mn(OH)(pin F ) 2 ], 3. Complex 3 is prepared via deprotonation of K[Mn(OH 2 )(pin F ) 2 ], 1, the p K a of which is estimated to be 18.3 ± 0.3. Cyclic voltammetry reveals quasi-reversible redox behavior for both 1 and 3 with an unusually large Δ E p , assigned to the Mn( iii / ii ) couple. Using the Bordwell method, the bond dissociation free energy (BDFE) of the O–H bond in {Mn( ii )–OH 2 } is estimated to be 67–70 kcal mol −1 . Complex 3 abstracts H-atoms from 1,2-diphenylhydrazine, 2,4,6-TTBP, and TEMPOH, the latter of which supports a PCET mechanism. Under basic conditions in air, the synthesis of 1 results in K 2 [Mn(OAc)(pin F ) 2 ], 2, proposed to result from the oxidation of Et 2 O to EtOAc by a reactive Mn species, followed by ester hydrolysis. Complex 3 alone does not react with Et 2 O, but addition of O 2 at low temperature effects the formation of a new chromophore proposed to be a Mn( iv ) species. The related complexes K(18C6)[Mn( iii )(pin F ) 2 ], 4, and (Me 4 N) 2 [Mn( ii )(pin F ) 2 ], 5, have also been prepared and their properties discussed in relation to complexes 1–3. 
    more » « less
  2. The use of 18-crown-6 (18-c-6) in place of 2.2.2-cryptand (crypt) in rare earth amide reduction reactions involving potassium has proven to be crucial in the synthesis of Ln( ii ) complexes and isolation of their CO reduction products. The faster speed of crystallization with 18-c-6 appears to be important. Previous studies have shown that reduction of the trivalent amide complexes Ln(NR 2 ) 3 (R = SiMe 3 ) with potassium in the presence of 2.2.2-cryptand (crypt) forms the divalent [K(crypt)][Ln II (NR 2 ) 3 ] complexes for Ln = Gd, Tb, Dy, and Tm. However, for Ho and Er, the [Ln(NR 2 ) 3 ] 1− anions were only isolable with [Rb(crypt)] 1+ counter-cations and isolation of the [Y II (NR 2 ) 3 ] 1− anion was not possible under any of these conditions. We now report that by changing the potassium chelator from crypt to 18-crown-6 (18-c-6), the [Ln(NR 2 ) 3 ] 1− anions can be isolated not only for Ln = Gd, Tb, Dy, and Tm, but also for Ho, Er, and Y. Specifically, these anions are isolated as salts of a 1 : 2 potassium : crown sandwich cation, [K(18-c-6) 2 ] 1+ , i.e. [K(18-c-6) 2 ][Ln(NR 2 ) 3 ]. The [K(18-c-6) 2 ] 1+ counter-cation was superior not only in the synthesis, but it also allowed the isolation of crystallographically-characterizable products from reactions of CO with the [Ln(NR 2 ) 3 ] 1− anions that were not obtainable from the [K(crypt)] 1+ analogs. Reaction of CO with [K(18-c-6) 2 ][Ln(NR 2 ) 3 ], generated in situ , yielded crystals of the ynediolate products, {[(R 2 N) 3 Ln] 2 (μ-OCCO)} 2− , which crystallized with counter-cations possessing 2 : 3 potassium : crown ratios, i.e. {[K 2 (18-c-6) 3 ]} 2+ , for Gd, Dy, Ho. In contrast, reaction of CO with a solution of isolated [K(18-c-6) 2 ][Gd(NR 2 ) 3 ], produced crystals of an enediolate complex isolated with a counter-cation with a 2 : 2 potassium : crown ratio namely [K(18-c-6)] 2 2+ in the complex [K(18-c-6)] 2 {[(R 2 N) 2 Gd 2 (μ-OCHCHO) 2 ]}. 
    more » « less
  3. Co( ii ) complexes of 1,4,7,10-tetraazacyclododecane (CYCLEN) or 1,4,8,11-tetraazacyclotetradecane (CYCLAM) with 2-hydroxypropyl or carbamoylmethyl (amide) pendants are studied with the goal of developing paramagnetic chemical exchange saturation transfer (paraCEST) agents. Single-crystal X-ray diffraction studies show that two of the coordination cations with hexadentate ligands, [Co(DHP)] 2+ and [Co(BABC)] 2+ , form six-coordinate complexes; whereas two CYCLEN-based complexes with potentially octadentate ligands, [Co(THP)] 2+ and [Co(HPAC)] 2+ , are seven-coordinate with only three of the four pendant groups bound to the metal center. 1 H NMR spectra of these complexes suggest that the six-coordinate complexes are present as a single isomer in aqueous solution. For the complexes which are seven-coordinate in the solid state, one is highly fluxional in aqueous solution on the NMR time scale ([Co(HPAC)] 2+ ), whereas the NMR spectrum of [Co(THP)] 2+ is consistent with an eight-coordinate complex with all pendants bound. Co( ii ) complexes of CYCLEN derivatives show CEST effects of low intensity that are assigned to NH or OH groups of the pendants. One complex, [Co(DHP)] 2+ , shows a highly-shifted CEST peak at 113 ppm versus bulk water, attributed to OH protons. However, the CEST effect is largest for two Co( ii ) CYCLAM-based complexes with coordinated amide groups that undergo NH proton exchange. All five complexes are inert towards dissociation in buffered solutions containing carbonate and phosphate and towards trans-metalation by excess Zn( ii ). These data give insight into the production of an intense CEST effect for tetraazamacrocyclic complexes with pendant groups containing NH or OH exchangeable protons. The intense and highly shifted CEST peak(s) of the CYCLAM-based complexes suggest that they are promising for further development as paraCEST agents. 
    more » « less
  4. The formation of lead carboxylates (lead soaps) has been identified as the cause of deterioration of hundreds of oil paintings. Soaps form when heavy metal-containing pigments, for example lead white and lead-tin yellow, react with saturated fatty acids in the oil medium. Understanding the mechanism of the reactions requires chemical information, which can be obtained with solid-state 207Pb, 119Sn and 13C NMR spectroscopy. Using the chemical-shift tensors determined by solid-state NMR we can gain structural insights on the coordination environment of the lead carboxylates and identify and quantify components in a paint film mixture. We have examined the spectroscopy of lead-containing pigments, lead carboxylates, and model paint films that were subjected to accelerated aging. We have also begun to investigate the dynamics of soap formation by 13C NMR spectroscopy. The NMR methods applied to the model paint systems could also be applied to other lead-containing materials. 
    more » « less
  5. Investigation of Cu–O 2 oxidation reactivity is important in biological and anthropogenic chemistry. Zeolites are one of the most promising Cu/O based oxidation catalysts for development of industrial-scale CH 4 to CH 3 OH conversion. Their oxidation mechanisms are not well understood, however, highlighting the importance of the investigation of molecular Cu( i )–O 2 reactivity with O-donor complexes. Herein, we give an overview of the synthesis, structural properties, and O 2 reactivity of three different series of O-donor fluorinated Cu( i ) alkoxides: K[Cu(OR) 2 ], [(Ph 3 P)Cu(μ-OR) 2 Cu(PPh 3 )], and K[(R 3 P)Cu(pin F )], in which OR = fluorinated monodentate alkoxide ligands and pin F = perfluoropinacolate. This breadth allowed for the exploration of the influence of the denticity of the ligand, coordination number, the presence of phosphine, and K⋯F/O interactions on their O 2 reactivity. K⋯F/O interactions were required to activate O 2 in the monodentate-ligand-only family, whereas these connections did not affect O 2 activation in the bidentate complexes, potentially due to the presence of phosphine. Both families formed trisanionic, trinuclear cores of the form {Cu 3 (μ 3 -O) 2 } 3− . Intramolecular and intermolecular substrate oxidation were also explored and found to be influenced by the fluorinated ligand. Namely, {Cu 3 (μ 3 -O) 2 } 3− from K[Cu(OR) 2 ] could perform both monooxygenase reactivity and oxidase catalysis, whereas those from K[(R 3 P)Cu(pin F )] could only perform oxidase catalysis. 
    more » « less