The Plio-Pleistocene El Laco iron oxide-apatite (IOA) orebodies in northern Chile are some of the most enigmatic mineral deposits on Earth, interpreted to have formed as lava flows or by hydrothermal replacement, two radically different processes. Field observations provide some support for both processes, but ultimately fail to explain all observations. Previously proposed genetic models based on observations and study of outcrop samples include (1) magnetite crystallization from an erupting immiscible Fe- and P-rich (Si-poor) melt and (2) metasomatic replacement of andesitic lava flows by a hypogene hydrothermal fluid. A more recent investigation of outcrop and drill core samples at El Laco generated data that were used to develop a new genetic model that invokes shallow emplacement and surface venting of a magnetite-bearing magmatic-hydrothermal fluid suspension. This fluid, with rheological properties similar to basaltic lava, would have been mobilized by decompression- induced collapse of the volcanic edifice. In this study, we report oxygen, including 17O, hydrogen, and iron stable isotope ratios in magnetite and bulk iron oxide (magnetite with minor secondary hematite and minor goethite) from five of seven orebodies around the El Laco volcano, excluding San Vicente Bajo and the minor Laquito deposits. Calculated values of δ18O, Δ17O, δD,more »
The Geochemistry of Magnetite and Apatite from the El Laco Iron Oxide-Apatite Deposit, Chile: Implications for Ore Genesis
The textures of outcrop and near-surface exposures of the massive magnetite orebodies (>90 vol % magnetite)
at the Plio-Pleistocene El Laco iron oxide-apatite (IOA) deposit in northern Chile are similar to basaltic lava
flows and have compositions that overlap high- and low-temperature hydrothermal magnetite. Existing models—
liquid immiscibility and complete metasomatic replacement of andesitic lava flows—attempt to explain
the genesis of the orebodies by entirely igneous or entirely hydrothermal processes. Importantly, those models
were developed by studying only near-surface and outcrop samples. Here, we present the results of a comprehensive
study of samples from outcrop and drill core that require a new model for the evolution of the El Laco
ore deposit. Backscattered electron (BSE) imaging, electron probe microanalysis (EPMA), and laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to investigate the textural and compositional
variability of magnetite and apatite from surface and drill core samples in order to obtain a holistic
understanding of textures and compositions laterally and vertically through the orebodies. Magnetite was analyzed
from 39 surface samples from five orebodies (Cristales Grandes, Rodados Negros, San Vicente Alto, Laco
Norte, and Laco Sur) and 47 drill core samples from three orebodies (Laco Norte, Laco Sur, and Extensión
Laco Sur). The geochemistry of apatite from eight surface samples from three more »
- Award ID(s):
- 1924142
- Publication Date:
- NSF-PAR ID:
- 10294836
- Journal Name:
- Economic geology
- ISSN:
- 0013-0109
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Chahgaz iron oxide-apatite (IOA) deposit is one of the main IOA deposits in the Bafq metallogenic province, Central Iran. The Chahgaz mineral deposit is hosted by Early Cambrian felsic to intermediate, altered subvolcanic to effusive rocks that range compositionally from granite to diorite. Geochemical, geochronologic and tectonomagmatic investigations of various host rock types in the Bafq province indicate that mineralization was the product of Early Cambrian active continental margin processes that evolved calc-alkaline felsic igneous rocks followed by formation of diabase dykes in a back-arc basin environment. Magnetite is present in massive magnetite-rich ore bodies and veinlets that cut the massive ore bodies. Detailed macro- and micro-scopic characterization of mineralized samples and host rocks reveals a paragenetic sequence containing three generations of magnetite that are distinguished from one another compositionally and texturally. The massive ores contain apatite in trace amounts, consistent with IOA deposits globally, and locally exhibit textures that are visually similar to lava flow structures, as described for the El Laco IOA deposit, Chile. The ore bodies contain miarolitic cavities that are filled by calcite, hematite and quartz. The host rocks for the Chahgaz deposit have undergone widespread hydrothermal metasomatism including Na-Ca, K-, Mg-, Si-, sericitic, argillicmore »
-
Magnetite is the most important iron ore in iron oxide-apatite (IOA) deposits which represent the Cu-poor endmember of the iron oxide-copper–gold (IOCG) clan. Magnetite chemistry has been used as a petrogenetic indicator to identify the geological environment of ore formation and as a fingerprint of the source reservoir of iron. In this study, we present new textural and microanalytical EPMA and LA-ICP-MS data of magnetite from Carmen, Fresia, Mariela and El Romeral IOA deposits located in the Cretaceous Coastal Cordillera of northern Chile. We also provide a comprehensive summary and discussion of magnetite geochemistry from Andean IOAs including Los Colorados, Cerro Negro Norte, El Romeral (Chilean Iron Belt) and the Pliocene El Laco IOA deposit located in the Central Volcanic Zone of the Chilean Andes. Microtextures coupled with geochemical data were used to define and characterize the occurrence of different magnetite types. Magnetite exhibits a variety of textural features including oscillatory zoning, colloform banding, re-equilibration textures, exsolution lamellae and symplectites. The magmatic vs. hydrothermal origin of the different magnetite types and the evolution of IOA deposits can be assessed using diagrams based on compatible trace elements. However, magnetite is very susceptible to hydrothermal alteration and to both textural and compositionalmore »
-
Iron oxide copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe oxides, and may contain Au, Ag, Co, rare earth elements (REEs), U, and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the hydrothermal unit and manto orebodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three types of magnetite: magnetite with inclusions (type I) is only found in the manto, is the richest in trace elements, and crystallized between 459° and 707°C; type Dark (D) has no visible inclusions and formed at around 543°C; and type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443°C. Temperatures were estimated using the Mg content in magnetite. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n = 9), an average δ18O ± 2σ value of 2.19 ± 0.45‰ (n = 9), and D’17O values that range between –0.075 and –0.047‰. Sulfide separates yieldedmore »
-
Most known porphyry Cu±Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite–trondhjemite–granodiorite–diorite (TTG) magmas predominant in the Archean are hypothesized to be unoxidized and sulfur-poor, which together preclude porphyry Cu deposit formation. Here, we test this hypothesis by interrogating the causative magmas for the ∼2·7 Ga TTG-related Côté Gold, St-Jude, and Clifford porphyry-type Cu±Au deposit settings in the Neoarchean southern Abitibi subprovince. New and previously published geochronological results constrain the age of emplacement of the causative magmas at ∼2·74 Ga, ∼2·70 Ga, and∼2·69 Ga, respectively. The dioritic and trondhjemitic magmas associated with Côté Gold and St-Jude evolved along a plagioclase-dominated fractionation trend, in contrast to amphibole-dominated fractionation for tonalitic magma at Clifford. Analyses of zircon grains from the Côté Gold, St-Jude, and Clifford igneous rocks yielded εHf(t)±SD values of 4·5±0·3, 4·2±0·6, and 4·3±0·4, and δ18O±SD values of 5·40±0·11 , 3·91±0·13 , and 4·83±0·12 , respectively. These isotopic signatures indicate that, although these magmas are mantle-sourced with minimal crustal contamination, for the St- Jude and Clifford settings the magmas or their sources may have undergone variable alteration by heated seawater or meteoric fluids. Primary barometric minerals (i.e. zircon,more »