skip to main content


Title: Initial Cenozoic Magmatic Activity in East Africa: New Geochemical Constraints on Magma Distribution within the Eocene Continental Flood Basalt Province
Abstract The initial interaction between material rising from the African Large Low Shear Velocity Province and the African lithosphere manifests as the Eocene continental large igneous province (LIP), centered on southern Ethiopia and northern Kenya. Here we present a geographically well-distributed geochemical dataset comprising the flood basalt lavas of the Eocene continental LIP to refine the regional volcano-stratigraphy into three distinct magmatic units: (1) the highly-alkaline small-volume Akobo Basalts (49.4–46.6 Ma), representing the initial phase of flood basalt volcanism derived from the melting of lithospheric-mantle metasomes, (2) the primitive and spatially restricted Amaro Basalts (45.2–39.58 Ma) representing the early main phase of flood basalt volcanism derived from the melting of the upwelling thermochemical anomaly, and (3) the spatially extensive Gamo-Makonnen magmatic unit (38-28 Ma) representing the mature main phase of flood basalt volcanism that has undergone significant processing within the lithosphere resulting in relatively homogeneous compositions. The focused intrusion of these main phase magmas over 10 m.y. preconditioned the African lithosphere for the localization of strain during subsequent episodes of lithospheric stretching. The focusing of strain into the region occupied by this continental LIP may have contributed to the initial extension in SW Ethiopia associated with the East African Rift. Supplementary material at https://doi.org/10.6084/m9.figshare.c.5557626  more » « less
Award ID(s):
1824417
NSF-PAR ID:
10294872
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Srivastava, R. K.
Date Published:
Journal Name:
Geological Society, London, Special Publications
Volume:
518
ISSN:
0305-8719
Page Range / eLocation ID:
SP518-2020-262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Walvis Ridge (WR) is a long-lived hotspot track that began with a continental flood basalt event at ~132 Ma during the initial opening of the South Atlantic Ocean. WR stretches ~3300 km to the active volcanic islands of Tristan da Cunha and Gough, and it was originally paired with Rio Grande Rise (RGR) oceanic plateau. Because of the duration of its volcanism and the length of its track, the Tristan-Gough hotspot forms the most pronounced bathymetric anomaly of all Atlantic hotspots. Its age progression, chemistry, and connection to flood basalts point to a lower mantle plume source, projected to be the hypothesized plume generation zone at the margin of the African large low shear-wave velocity province. The hotspot interacted with the Mid-Atlantic Ridge (MAR) during its early history, producing WR and RGR through plume-ridge interaction. Valdivia Bank, a WR plateau paired with the main part of RGR, represents heightened hotspot output and may have formed with RGR around a microplate, disrupting the expected hotspot age progression. After producing a relatively uniform composition from ~120 to ~70 Ma, WR split into three seamount chains with distinct isotopic compositions at about the time that the plume and MAR separated. With ~70 My spatial zonation, the hotspot displays the longest-lived geochemical zonation known. Currently at ~400 km width with young volcanic islands at both ends, the hotspot track is far wider than other major hotspot tracks. Thus, WR displays global extremes with respect to (1) width of its hotspot track, (2) longevity of zonation, (3) division into separate chains, and (4) plume-ridge interaction involving a microplate, raising questions about the geodynamic evolution of this hotspot track. Understanding WR is critical for knowledge of the global spectrum of plume systems. To test hypotheses about mantle plume zonation, plume activity around a microplate, and hotspot drift, we propose coring at six locations along the older ridge to recover successions of basaltic lava flows ranging in age from ~59 to 104 Ma. Samples will help us trace the evolution of geochemical and isotopic signatures as the hotspot track became zoned, offering vital clues about compositional changes of the plume source and important implications for understanding the origin of hotspot zonation. Dating will show the age progression of volcanism both at individual sites and along the ridge, testing whether WR formed as a strictly age-progressive hotspot track and whether Valdivia Bank formed as a plume pulse, extended volcanism around a microplate, or possibly even a continental fragment. Paleomagnetic data will track paleolatitude changes of the hotspot, testing whether hotspot drift or true polar wander, or both, explain changes in paleolatitude. 
    more » « less
  2. Hotspot tracks (chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are often simple, nearly linear chains of seamounts, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts (most are flat-topped guyots). The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. Walvis Ridge, forming the older part of the track, is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamounts of the Guyot Province, to collect igneous rocks to better understand the formation of volcanic edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard Coronavirus (COVID-19) outbreak, Expedition 391 proceeded to drill at four of the proposed sites: three sites on Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track of the Guyot Province, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the islands of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to Gough Island). The first hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge just north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The sediments ranged in age from Late Pleistocene (~0.43–1.24 Ma) to Late Cretaceous (Campanian; 72–78 Ma). The igneous basement comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first of these holes was terminated because a bit jammed shortly after entering the igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Late Pleistocene (~0.43–1.24 Ma) to Late Cretaceous (Campanian; ~79–81.38 Ma). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement recovered in Hole U1576B yielded 11 submarine lava units (total thickness = ~65 m). The flows range from pillows to massive flows with compositions varying from tholeiitic basalt to basaltic andesite, only the second occurrence of the latter composition recovered from the TGW track thus far. These units are separated by seven sedimentary chalk units that range 0.1–11.6 m in thickness, implying a long-term interplay of sedimentation and lava eruptions. These intercalated sediments revealed Upper Cretaceous (Campanian) ages of ~77–79 Ma for the upper two interbeds and ~79–81.38 Ma for the lower beds. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154.8 m thick sedimentary section ranging from the Paleocene (Thanetian; ~58.8 Ma) to Upper Cretaceous (Campanian; ~81.43–83.20 Ma). Igneous basement coring progressed only 39.1 m below the sediment/basalt contact, recovering three massive submarine tholeiitic basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that the former volcanic basement formed just before the end of the Cretaceous Normal Superchron and the latter during Chron 33r, shortly afterward. Biostratigraphic and paleomagnetic data suggest that Valdivia Bank becomes younger from east to west. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk (~55.64–63.5 Ma), Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine (some fresh), and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging 0.46–10.19 m in thickness. Investigations of toothpick samples from the intercalated sediments were examined, each revealing the same age range of ~63.5–64.81 Ma (lower Paleocene; Danian). Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Nearly 7 months after Expedition 391, JOIDES Resolution transited from Cape Town to the north Atlantic. During this transit (Expedition 397T), 7.9 days of ship time were used to drill two holes (U1584A and U1585A) at sites on the Gough and Tristan tracks that had been omitted because of COVID-19–related time loss on the earlier cruise. For both, coring was begun only a short distance above the igneous basement to save time. The 75.2 m thick section drilled in Hole U1584A contains two sedimentary units: clay-rich carbonate sediments overlie a pumice-dominated volcaniclastic deposit containing basalt fragments. Because the goal was to core basalt and the base of the volcaniclastic deposit was not imaged in the seismic profile, the hole was terminated early to save operation time for the next site. In Hole U1585A, coring penetrated a 273.5 m thick sediment section overlying an 81.2 m thick pile of massive basalt flows. The sediment section is divided into four units: The uppermost unit consists of nannofossil chalk; The two intermediate units contain alternating chalk and volcaniclastic sediments containing several breccia units; and The lowermost unit consists of volcanic breccia containing juvenile blocks, bombs, and accretionary lapilli. This thick sedimentary section documents a transition from shallow-water volcanism to open-ocean sedimentation as the seamount subsided. The thick underlying basalt section is made up of four sparsely to highly phyric massive flows, the thickest of which is >43 m thick. Samples of these units are mostly basalt with a few trachybasalts and one trachyandesite. Although the igneous penetration was less than planned, coring during Expeditions 391 and 397T obtained samples that clearly will lead to an improved understanding of the evolution of the TGW hotspot and its track. Reasonable recovery of fresh basalt in some holes provides ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study. 
    more » « less
  3. Abstract

    There is a consensus that volcanism along the East African Rift System (EARS) is related to plume activities. However, because of our limited knowledge of the local lithospheric mantle, the dynamics of the plume are poorly constrained by magma chemistry. The Turkana Basin is one of the best places to study plume‐related volcanism because the lithospheric mantle there is unusually thin. New Ar‐Ar geochronology and geochemical data on lavas from western Turkana show that Eocene volcanics have relatively low206Pb/204Pb (<19.1) and high εNd (>3.78). Their relatively high Ba/Rb (35–78) ratios suggest contributions from the shallow lithospheric mantle. Oligo‐Miocene Turkana volcanics have HIMU‐ and EMI‐ type enriched mantle signatures with overall lower Ba/Rb ratios, which is consistent with partial melting of plume material. Pliocene and younger Turkana volcanics have low Ba/Rb and Sr‐Nd‐Pb isotope ratios that resemble those of Ethiopian volcanics with elevated3He/4He ratios. This temporal variation can be reconciled with a layered plume model where an outer layer of ancient recycled oceanic crust and sediment overlies more primitive lower mantle material. Beneath Ethiopia, the outer layer of the plume is either missing or punctured by the delamination of the thicker overlying lithospheric mantle atca.30 Ma, an event that would have facilitated the rapid upwelling of the inner portion of the plume and triggered the Ethiopian flood volcanism. The outer layer of the plume may be thicker in the southern EARS, which could explain the occurrence of young HIMU‐ and EMI‐type volcanics with primordial noble gas signatures.

     
    more » « less
  4. Abstract

    Lavas erupted in Continental Flood Basalt (CFB) provinces are not primary magmas; they are differentiated products that result from large volumes of melt migrating and stalling in the lithosphere prior to eruption, resulting in complex liquid lines of descent. Geochemical models can be used to constrain the various influencers of magma differentiation (recharge, assimilation, fractional crystallization (FC), eruption, and mixing). Temporal constraints for changes in plumbing system dynamics are recorded in the petrography and stratigraphy of the erupted lava flows. This study focuses on the flow‐stratigraphy preserved within the Oligocene Ethiopian low‐Ti flood basalt province, located on the NW Ethiopian Plateau. We present new bulk rock geochemistry from 107 lavas and interpret these data within a petrostratigraphic framework. Our model results suggest that both a deep (∼0.6 GPa) and shallow (<0.2 GPa) magmatic system are active throughout the main phase of volcanism. Our recharge evacuation assimilation and fractional crystallization models (REAFC) show that during the main phase of magmatism evacuation from both the deep (65%) and shallow (55%) systems reached an apex. During the terminal phases, magma evacuation from the deeper system ceases while evacuation from the shallow system is much reduced (25%). The degree of crustal contamination predicted by REAFC (4%–10%) is lower than previous estimates determined for this region using assimilation with FC only models (12%–25%). Our study highlights the importance of evaluating petrography while interpreting geochemical models in CFB.

     
    more » « less
  5. Abstract

    The Payenia region of Argentina (34.5–38°S) is a large Pliocene‐Quaternary volcanic province of basaltic compositions in the Andean Cordillera foothills representing the northernmost extent of back‐arc volcanism in the Andean Southern Volcanic Zone (SVZ). Although the chemical diversity of the Payenia basalts has been characterized previously, the processes and sources responsible for such variation remain controversial. Here, we report new whole‐rock major and trace element concentrations, Sr‐, Nd‐, Hf‐, and Pb‐isotope ratios and high‐precision olivine oxygen‐isotope ratios in a suite of 35 alkaline basalts from Payenia. These lavas have major and trace elements that define a compositional range from arc‐influenced to intraplate signature. Variable crustal contamination and/or recent slab‐derived inputs inadequately account for elemental and isotopic systematics and spatial compositional variations of Payenia lavas. We present a simple forward model indicating that early metasomatism and subsequent melting of the metasomatized subcontinental lithospheric mantle (SCLM) has significantly contributed to the Payenia lava compositional range. Isotopic ingrowth calculations of radiogenic Sr, Nd, Hf, and Pb suggest that the SCLM metasomatism occurred at 50–150 Ma, consistent with the timing of the breakup of Gondwana and the development of the proto‐Pacific Andean arc. Variations in δ18Oolivinevalues from modeled melts indicate that the metasomatism and melting within the SCLM can fractionate oxygen isotopes even when the metasomatizing melt has MORB‐like δ18O values, providing a different explanation for the low‐δ18O signatures observed in continental arc settings.

     
    more » « less