skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh: Analysis of a 30-Year Shoreline Change Record and Recent Population Impacts
Award ID(s):
1660447
PAR ID:
10294893
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annals of the American Association of Geographers
Volume:
111
Issue:
4
ISSN:
2469-4452
Page Range / eLocation ID:
1002 to 1024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic amplification of climate change has resulted in increased coastal hazards impacts to remote rural coastal communities in Alaska where conducting research can be difficult, requiring alternate methods for measuring change. The pilot program, Stakes for Stakeholders, was initially planned to be funded from 2016–2018. Upon project completion the work has shifted to individual community’s partnering with several agencies to continue the work. This research showcases a successful long-term community-based erosion monitoring program in two rural communities in Southwest Alaska. The resulting outputs from the workflow we developed were (1) locally prioritized data products, such as a hazard assessment report for Chignik Bay and (2) evaluation rubrics used to assess the suitability of future sites and the efficacy of the program. Our model of two-way communication, responsiveness to individual community needs, and attention to efficiency and effectiveness of the program workflow, can serve as a model for universities, for-profit, non-profit, Tribal, city, state, and federal research agencies and communities partnering to respond to global climate change. 
    more » « less
  2. Globally, coastal zones, rivers and riverine areas, and deltas carry enormous values for ecosystems, socio-economic, and environmental perspectives. These often highly populated areas are generally significantly different from interior hinterlands in terms of population density, economic activities, and geophysical and ecological processes. Geospatial technologies are widely used by scholars from multiple disciplines to understand the dynamic nature of shoreline changes globally. In this paper, we conduct a systematic literature review to identify and interpret research patterns and themes related to shoreline change detection from 2000 to 2021. Two databases, Web of Science and Scopus, were used to identify articles that investigate shoreline change analysis using geospatial technique such as remote sensing and GIS analysis capabilities (e.g., the Digital Shoreline Analysis System (DSAS). Between the years 2000 and 2021, we initially found 1622 articles, which were inspected for suitability, leading to a final set of 905 articles for bibliometric analysis. For systematic analysis, we used Rayyan—a web-based platform used for screening literature. For bibliometric network analysis, we used the CiteSpace, Rayyan, and VOSviewer software. The findings of this study indicate that the majority of the literature originated in the USA, followed by India. Given the importance of protecting the communities living in the riverine areas, coastal zones, and delta regions, it is necessary to ask new research questions and apply cutting-edge tools and technology, such as machine learning approach and GeoAI, to fill the research gaps on shoreline change analysis. Such approaches could include, but are not limited to, centimeter level accuracy with high-resolution satellite imagery, the use of unmanned aerial vehicles (UAV), and point cloud data for both local and global level shoreline change and analysis. 
    more » « less
  3. null (Ed.)
    Globally, coastal communities are impacted by hazards including storm events, rising water levels, and associated coastal erosion. These hazards destroy homes and infrastructure causing human and financial risks for communities. At the same time, the economic and governance capacity of these communities varies widely, impacting their ability to plan and adapt to hazards. In order to identify locations vulnerable to coastal hazards, knowledge of the physical coastal changes must be integrated with the socio-economic profiles of communities. To do this, we couple information about coastal erosion rates and economic data in communities along the Great Lakes to develop a typology that summarizes physical and economic vulnerability to coastal erosion. This typology classifies communities into one of four categories: (1) High physical and economic vulnerability to coastal erosion, (2) High physical but low economic vulnerability to coastal erosion, (3) Low physical and low economic vulnerability to coastal erosion, and (4) High economic but low physical vulnerability to coastal erosion. An analysis of this typology over three time periods (2005–2010), (2010–2014), and (2014–2018) reveals the dynamic nature of vulnerability over this fourteen year time span. Given this complexity, it can be difficult for managers and decision-makers to decide where to direct limited resources for coastal protection. Our typology provides an analytical tool to proactively address this challenge. Further, it advances existing work on coastal change and associated vulnerability in three ways. One, it implements a regional, analytical approach that moves beyond case study-oriented work and facilitates community analyses in a comparative context. Two, the typology provides an integrated assessment of vulnerability that considers economic vulnerability to coastal erosion, which is a contextual variable that compounds or helps mitigate vulnerability. Three, the typology facilitates community comparisons over time, which is important to identifying drivers of change in Great Lakes coastal communities over time and community efforts to mitigate and adapt to these hazards. 
    more » « less