skip to main content

Title: Can Managed Aquifer Recharge Overcome Multiple Droughts?
Frequent droughts, seasonal precipitation, and growing agricultural water demand in the Yakima River Basin (YRB), located in Washington State, increase the challenges of optimizing water provision for agricultural producers. Increasing water storage through managed aquifer recharge (MAR) can potentially relief water stress from single and multi-year droughts. In this study, we developed an aggregated water resources management tool using a System Dynamics (SD) framework for the YRB and evaluated the MAR implementation strategy and the effectiveness of MAR in alleviating drought impacts on irrigation reliability. The SD model allocates available water resources to meet instream target flows, hydropower demands, and irrigation demand, based on system operation rules, irrigation scheduling, water rights, and MAR adoption. Our findings suggest that the adopted infiltration area for MAR is one of the main factors that determines the amount of water withdrawn and infiltrated to the groundwater system. The implementation time frame is also critical in accumulating MAR entitlements for single-year and multi-year droughts mitigation. In addition, adoption behaviors drive a positive feedback that MAR effectiveness on drought mitigation will encourage more MAR adoptions in the long run. MAR serves as a promising option for water storage management and a long-term strategy for MAR implementation more » can improve system resilience to unexpected droughts. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Expanding populations, the impacts of climate change, availability of arable land, and availability of water for irrigation collectively strain the agricultural system. To keep pace and adapt to these challenges, food producers may adopt unsustainable practices that may ultimately intensify the strain. What is a course of technological evolution and adoption that can break this cycle? In this paper we explore a set of technologies and food production scenarios with a new, reduced-order model. First the model is developed. The model combines limitations in the sustainable water supply, agricultural productivity as a function of intensification, and rising food demands. Modelmore »inputs are derived from the literature and historical records. Monte Carlo simulation runs of the model are used to explore the potential of existing and future technologies to bring us ever closer to a more sustainable future instead of ever farther. This is the concept of a moving sustainability horizon (the year in the future where sustainability can be achieved with current technological progress if demand remains constant). The sustainability gap is the number of years between the present and the sustainability horizon. As demand increases, the sustainability horizon moves farther into the future. As technology improves and productivity increases, the sustainability horizon is closer to the present. Sustainability, therefore, is achieved when the sustainability horizon collides with the present, closing the sustainability gap to zero. We find one pathway for water management technology adoption and innovation that closes the sustainability gap within the reduced-order model’s outputs. In this scenario, micro-irrigation adoption, minimal climate change impacts, reduced food waste, and additional transformative innovations such as smart greenhouses and agrivoltaic systems are collectively needed. The model shows that, in the absence of these changes, and continuing along our current course, the productivity of the agricultural system would become insufficient in the decade following 2050.« less
  2. Agricultural production in the Great Plains provides a significant amount of food for the United States while contributing greatly to farm income in the region. However, recurrent droughts and expansion of crop production are increasing irrigation demand, leading to extensive pumping and attendant depletion of the Ogallala aquifer. In order to optimize water use, increase the sustainability of agricultural production, and identify best management practices, identification of food–water conflict hotspots in the Ogallala Aquifer Region (OAR) is necessary. We used satellite remote sensing time series of agricultural production (net primary production, NPP) and total water storage (TWS) to identify hotspotsmore »of food–water conflicts within the OAR and possible reasons behind these conflicts. Mean annual NPP (2001–2018) maps clearly showed intrusion of high NPP, aided by irrigation, into regions of historically low NPP (due to precipitation and temperature). Intrusion is particularly acute in the northern portion of OAR, where mean annual TWS (2002–2020) is high. The Oklahoma panhandle and Texas showed large decreasing TWS trends, which indicate the negative effects of current water demand for crop production on TWS. Nebraska demonstrated an increasing TWS trend even with a significant increase of NPP. A regional analysis of NPP and TWS can convey important information on current and potential conflicts in the food–water nexus and facilitate sustainable solutions. Methods developed in this study are relevant to other water-constrained agricultural production regions.« less
  3. Climate change, drought, and chronic overdraft represent growing threats to the sustainability of water supplies in dry environments. The Monterey/Salinas region in California exemplifies a new era of integrated or “one water” management that is using all of the water it can get to achieve more sustainable supplies to benefit cities, agriculture, and the environment. This program is the first of its kind to reuse a variety of waters including wastewater, stormwater, food industry processing water, and agricultural drainage water. This study investigates the partnerships, projects, and innovations that shape Monterey’s integrated water network in order to better understand themore »challenges and opportunities facing California communities as they seek to sustainably manage peri-urban water supplies. Water reuse in the Monterey region produces substantial economic and environmental benefits, from tourism and irrigation of high-value crops to protection of groundwater and increases in environmental flows and water quality. Water resource managers in other communities can learn from Monterey’s success leveraging local needs and regional partnerships to develop effective integrated water solutions. However, key challenges remain in resolving mismatched timing between water availability and demand, funding alternative water supplies, and planning effectively under uncertainty. Opportunities exist to increase Monterey’s recycled water supply by up to 50%, but this requires investment in seasonal storage and depends on whether desalination or additional recycling forms the next chapter in the region’s water supply story. Regulatory guidance is needed on seasonal subsurface storage of tertiary-treated recycled water as distinct from potable recharge. By increasing the supply of recycled water to Monterey’s indirect potable use system, the region’s potential need for seawater desalination may be delayed as much as 30 years, resulting in cost and energy savings, and giving the opportunity to resolve present planning concerns.« less
  4. Abstract

    California’s Central Valley is one of the world’s most productive agricultural regions. Its high-value fruit, vegetable, and nut crops rely on surface water imports from a vast network of reservoirs and canals as well as groundwater, which has been substantially overdrafted to support irrigation. The region has undergone a shift to perennial (tree and vine) crops in recent decades, which has increased water demand amid a series of severe droughts and emerging regulations on groundwater pumping. This study quantifies the expansion of perennial crops in the Tulare Lake Basin, the southern region of the Central Valley with limited naturalmore »water availability. A gridded crop type dataset is compiled on a 1 mi2spatial resolution from a historical database of pesticide permits over the period 1974–2016 and validated against aggregated county-level data. This spatial dataset is then analyzed by irrigation district, the primary spatial scale at which surface water supplies are determined, to identify trends in planting decisions and agricultural water demand over time. Perennial crop acreage has nearly tripled over this period, and currently accounts for roughly 60% of planted area and 80% of annual revenue. These trends show little relationship with water availability and have been driven primarily by market demand. From this data, we focus on the increasing minimum irrigation needs each year to sustain perennial crops. Results indicate that under a range of plausible future regulations on groundwater pumping ranging from 10% to 50%, water supplies may fail to consistently meet demands, increasing losses by up to 30% of annual revenues. More broadly, the datasets developed in this work will support the development of dynamic models of the integrated water-agriculture system under uncertain climate and regulatory changes to understand the combined impacts of water supply shortages and intensifying irrigation demand.

    « less
  5. Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased netmore »carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y −1 . Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions.« less