Generative pretrained transformer (GPT) tools have been thriving, as ignited by the remarkable success of OpenAI’s recent chatbot product. GPT technology offers countless opportunities to significantly improve or renovate current health care research and practice paradigms, especially digital health interventions and digital health–enabled clinical care, and a future of smarter digital health can thus be expected. In particular, GPT technology can be incorporated through various digital health platforms in homes and hospitals embedded with numerous sensors, wearables, and remote monitoring devices. In this viewpoint paper, we highlight recent research progress that depicts the future picture of a smarter digital health ecosystem through GPT-facilitated centralized communications, automated analytics, personalized health care, and instant decision-making.
- Award ID(s):
- 2029363
- PAR ID:
- 10295329
- Date Published:
- Journal Name:
- Diseases
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2079-9721
- Page Range / eLocation ID:
- 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Objectives The objective was to investigate the serial mediating effects of perceived cognitive functioning, patient health communication, and disease‐specific worry in the relationship between pain and overall generic health‐related quality of life (HRQOL) in youth with sickle cell disease (SCD) from the patient perspective.
Methods The pain, cognitive functioning, communication and worry scales from the Pediatric Quality of Life Inventory (PedsQL) Sickle Cell Disease Module and the PedsQL Multidimensional Fatigue Scale, and the PedsQL 4.0 Generic Core Scales were completed in a multisite national study by 233 youth with SCD of ages 5‐18. Hierarchical multiple regression and serial multiple mediator model analyses were conducted to test the mediating effects of perceived cognitive functioning, health communication, and disease‐specific worry as intervening variables in the association between the pain predictor variable and overall generic HRQOL.
Results Pain predictive effects on overall generic HRQOL were serially mediated by cognitive functioning, health communication, and disease‐specific worry. In predictive analytics models utilizing hierarchical multiple regression analyses with age and gender demographic covariates, pain, cognitive functioning, health communication, and worry accounted for 65% of the variance in patient‐reported overall generic HRQOL (
P < .001), representing a large effect size.Conclusions Perceived cognitive functioning, patient health communication, and disease‐specific worry explain in part the mechanism of pain predictive effects on overall generic HRQOL in youth with SCD. Identifying SCD‐specific pain, perceived cognitive functioning, health communication, and disease‐specific worry as predictor variables of overall generic HRQOL from the patient perspective may inform clinical interventions and future patient‐centered clinical research.
-
Background Digital health is poised to transform health care and redefine personalized health. As Internet and mobile phone usage increases, as technology develops new ways to collect data, and as clinical guidelines change, all areas of medicine face new challenges and opportunities. Inflammatory bowel disease (IBD) is one of many chronic diseases that may benefit from these advances in digital health. This review intends to lay a foundation for clinicians and technologists to understand future directions and opportunities together. Objective This review covers mobile health apps that have been used in IBD, how they have fit into a clinical care framework, and the challenges that clinicians and technologists face in approaching future opportunities. Methods We searched PubMed, Scopus, and ClinicalTrials.gov to identify mobile apps that have been studied and were published in the literature from January 1, 2010, to April 19, 2019. The search terms were (“mobile health” OR “eHealth” OR “digital health” OR “smart phone” OR “mobile app” OR “mobile applications” OR “mHealth” OR “smartphones”) AND (“IBD” OR “Inflammatory bowel disease” OR “Crohn's Disease” (CD) OR “Ulcerative Colitis” (UC) OR “UC” OR “CD”), followed by further analysis of citations from the results. We searched the Apple iTunes app store to identify a limited selection of commercial apps to include for discussion. Results A total of 68 articles met the inclusion criteria. A total of 11 digital health apps were identified in the literature and 4 commercial apps were selected to be described in this review. While most apps have some educational component, the majority of apps focus on eliciting patient-reported outcomes related to disease activity, and a few are for treatment management. Significant benefits have been seen in trials relating to education, quality of life, quality of care, treatment adherence, and medication management. No studies have reported a negative impact on any of the above. There are mixed results in terms of effects on office visits and follow-up. Conclusions While studies have shown that digital health can fit into, complement, and improve the standard clinical care of patients with IBD, there is a need for further validation and improvement, from both a clinical and patient perspective. Exploring new research methods, like microrandomized trials, may allow for more implementation of technology and rapid advancement of knowledge. New technologies that can objectively and seamlessly capture remote data, as well as complement the clinical shift from symptom-based to inflammation-based care, will help the clinical and health technology communities to understand the full potential of digital health in the care of IBD and other chronic illnesses.more » « less
-
Treating disease according to precision health requires the individualization of therapeutic solutions as a cardinal step that is part of a process that typically depends on multiple factors. The starting point is the collection and assembly of data over time to assess the patient’s health status and monitor response to therapy. Radiomics is a very important component of this process. Its main goal is implementing a protocol to quantify the image informative contents by first mining and then extracting the most representative features. Further analysis aims to detect potential disease phenotypes through signs and marks of heterogeneity. As multimodal images hinge on various data sources, and these can be integrated with treatment plans and follow-up information, radiomics is naturally centered on dynamically monitoring disease progression and/or the health trajectory of patients. However, radiomics creates critical needs too. A concise list includes: (a) successful harmonization of intra/inter-modality radiomic measurements to facilitate the association with other data domains (genetic, clinical, lifestyle aspects, etc.); (b) ability of data science to revise model strategies and analytics tools to tackle multiple data types and structures (electronic medical records, personal histories, hospitalization data, genomic from various specimens, imaging, etc.) and to offer data-agnostic solutions for patient outcomes prediction; (c) and model validation with independent datasets to ensure generalization of results, clinical value of new risk stratifications, and support to clinical decisions for highly individualized patient management.more » « less
-
Background Remote patient monitoring (RPM) technologies can support patients living with chronic conditions through self-monitoring of physiological measures and enhance clinicians’ diagnostic and treatment decisions. However, to date, large-scale pragmatic RPM implementation within health systems has been limited, and understanding of the impacts of RPM technologies on clinical workflows and care experience is lacking. Objective In this study, we evaluate the early implementation of operational RPM initiatives for chronic disease management within the ambulatory network of an academic medical center in New York City, focusing on the experiences of “early adopter” clinicians and patients. Methods Using a multimethod qualitative approach, we conducted (1) interviews with 13 clinicians across 9 specialties considered as early adopters and supporters of RPM and (2) speculative design sessions exploring the future of RPM in clinical care with 21 patients and patient representatives, to better understand experiences, preferences, and expectations of pragmatic RPM use for health care delivery. Results We identified themes relevant to RPM implementation within the following areas: (1) data collection and practices, including impacts of taking real-world measures and issues of data sharing, security, and privacy; (2) proactive and preventive care, including proactive and preventive monitoring, and proactive interventions and support; and (3) health disparities and equity, including tailored and flexible care and implicit bias. We also identified evidence for mitigation and support to address challenges in each of these areas. Conclusions This study highlights the unique contexts, perceptions, and challenges regarding the deployment of RPM in clinical practice, including its potential implications for clinical workflows and work experiences. Based on these findings, we offer implementation and design recommendations for health systems interested in deploying RPM-enabled health care.more » « less