skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MAGIC: Multitask Automated Generation of Inter-modal CT Perfusion Maps via Generative Adversarial Network
Introduction: Computed tomography perfusion (CTP) imaging requires injection of an intravenous contrast agent and increased exposure to ionizing radiation. This process can be lengthy, costly, and potentially dangerous to patients, especially in emergency settings. We propose MAGIC, a multitask, generative adversarial network-based deep learning model to synthesize an entire CTP series from only a non-contrasted CT (NCCT) input. Materials and Methods: NCCT and CTP series were retrospectively retrieved from 493 patients at UF Health with IRB approval. The data were deidentified and all images were resized to 256x256 pixels. The collected perfusion data were analyzed using the RapidAI CT Perfusion analysis software (iSchemaView, Inc. CA) to generate each CTP map. For each subject, 10 CTP slices were selected. Each slice was paired with one NCCT slice at the same location and two NCCT slices at a predefined vertical offset, resulting in 4.3K CTP images and 12.9K NCCT images used for training. The incorporation of a spatial offset into the NCCT input allows MAGIC to more accurately synthesize cerebral perfusive structures, increasing the quality of the generated images. The studies included a variety of indications, including healthy tissue, mild infarction, and severe infarction. The proposed MAGIC model incorporates a novel multitask architecture, allowing for the simultaneous synthesis of four CTP modalities: mean transit time (MTT), cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP). We propose a novel Physicians-in-the-loop module in the model's architecture, acting as a tunable layer that allows physicians to manually adjust the amount of anatomic detail present in the synthesized CTP series. Additionally, we propose two novel loss terms: multi-modal connectivity loss and extrema loss. The multi-modal connectivity loss leverages the multi-task nature to assert that the mathematical relationship between MTT, CBF, and CBV is satisfied. The extrema loss aids in learning regions of elevated and decreased activity in each modality, allowing for MAGIC to accurately learn the characteristics of diagnostic regions of interest. Corresponding NCCT and CTP slices were paired along the vertical axis. The model was trained for 100 epochs on a NVIDIA TITAN X GPU. Results and Discussion: The MAGIC model’s performance was evaluated on a sample of 40 patients from the UF Health dataset. Across all CTP modalities, MAGIC was able to accurately produce images with high structural agreement between the entire synthesized and clinical perfusion images (SSIMmean=0.801 , UQImean=0.926). MAGIC was able to synthesize CTP images to accurately characterize cerebral circulatory structures and identify regions of infarct tissue, as shown in Figure 1. A blind binary evaluation was conducted to assess the presence of cerebral infarction in both the synthesized and clinical perfusion images, resulting in the synthesized images correctly predicting the presence of cerebral infarction with 87.5% accuracy. Conclusions: We proposed a MAGIC model whose novel deep learning structures and loss terms enable high-quality synthesis of CTP maps and characterization of circulatory structures solely from NCCT images, potentially eliminating the requirement for the injection of an intravenous contrast agent and elevated radiation exposure during perfusion imaging. This makes MAGIC a beneficial tool in a clinical scenario increasing the overall safety, accessibility, and efficiency of cerebral perfusion and facilitating better patient outcomes. Acknowledgements: This work was partially supported by the National Science Foundation, IIS-1908299 III: Small: Modeling Multi-Level Connectivity of Brain Dynamics + REU Supplement, to the University of Florida.  more » « less
Award ID(s):
1908299
PAR ID:
10296316
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biomedical Engineering Society Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Multi-series CT (MSCT) scans, including non-contrast CT (NCCT), CT Perfusion (CTP), and CT Angiography (CTA), are widely used in acute stroke imaging. While each scan has its advantage in disease diagnosis, the varying image resolution of different series hinders the ability of the radiologist to discern subtle suspicious findings. Besides, higher image quality requires high radiation doses, leading to increases in health risks such as cataract formation and cancer induction. Thus, it is highly crucial to develop an approach to improve MSCT resolution and to lower radiation exposure. Hypothesis MSCT imaging of the same patient is highly correlated in structural features, the transferring and integration of the shared and complementary information from different series are beneficial for achieving high image quality. Methods We propose TL-GAN, a learning-based method by using Transfer Learning (TL) and Generative Adversarial Network (GAN) to reconstruct high-quality diagnostic images. Our TL-GAN method is evaluated on 4,382 images collected from nine patients’ MSCT scans, including 415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. We randomly split the nine patients into a training set (4 patients), a validation set (2 patients), and a testing set (3 patients). In preprocessing, we remove the background and skull and visualize in brain window. The low-resolution images (1/4 of the original spatial size) are simulated by bicubic down-sampling. For training without TL, we train different series individually, and for with TL, we follow the scanning sequence (NCCT, CTP, and CTA) by finetuning. Results The performance of TL-GAN is evaluated by the peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) index on 184 NCCT, 882 CTP, and 107 CTA test images. Figure 1 provides both visual (a-c) and quantity (d-f) comparisons. Through TL-GAN, there is a significant improvement with TL than without TL (training from scratch) for NCCT, CTP, and CTA images, respectively. These significances of performance improvement are evaluated by one-tailed paired t-tests (p < 0.05). We enlarge the regions of interest for detail visual comparisons. Further, we evaluate the CTP performance by calculating the perfusion maps, including cerebral blood flow (CBF) and cerebral blood volume (CBV). The visual comparison of the perfusion maps in Figure 2 demonstrate that TL-GAN is beneficial for achieving high diagnostic image quality, which are comparable to the ground truth images for both CBF and CBV maps. Conclusion Utilizing TL-GAN can effectively improve the image resolution for MSCT, provides radiologists more image details for suspicious findings, which is a practical solution for MSCT image quality enhancement. 
    more » « less
  2. Abstract Studying brain‐wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro‐ diseases and ‐disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head‐mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain‐wide cerebrovascular reactivity (CVR) at single‐vessel resolution via relative changes in CBV, CBF, and SO2in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti‐correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions. 
    more » « less
  3. Autoregulation and neurovascular coupling are key mechanisms that modulate myogenic tone (MT) in vessels to regulate cerebral blood flow (CBF) during resting state and periods of increased neural activity, respectively. To determine relative contributions of distinct vascular zones across different cortical depths in CBF regulation, we developed a simplified yet detailed and computationally efficient model of the mouse cerebrovasculature. The model integrates multiple simplifications and generalizations regarding vascular morphology, the hierarchical organization of mural cells, and potentiation/inhibition of MT in vessels. Our analysis showed that autoregulation is the result of the synergy between these factors, but achieving an optimal balance across all cortical depths and throughout the autoregulation range is a complex task. This complexity explains the non-uniformity observed experimentally in capillary blood flow at different cortical depths. In silico simulations of cerebral autoregulation support the idea that the cerebral vasculature does not maintain a plateau of blood flow throughout the autoregulatory range and consists of both flat and sloped phases. We learned that small-diameter vessels with large contractility, such as penetrating arterioles and precapillary arterioles, have major control over intravascular pressure at the entry points of capillaries and play a significant role in CBF regulation. However, temporal alterations in capillary diameter contribute moderately to cerebral autoregulation and minimally to functional hyperemia. In addition, hemodynamic analysis shows that while hemodynamics within capillaries remain relatively stable across all cortical depths throughout the entire autoregulation range, significant variability in hemodynamics can be observed within the first few branch orders of precapillary arterioles or transitional zone vessels. The computationally efficient cerebrovasculature model, proposed in this study, provides a novel framework for analyzing dynamics of the CBF regulation where hemodynamic and vasodynamic interactions are the foundation on which more sophisticated models can be developed. 
    more » « less
  4. Abstract Background The brain extracellular environment is involved in many critical processes associated with neurodevelopment, neural function, and repair following injury. Organization of the extracellular matrix and properties of the extracellular space vary throughout development and across different brain regions, motivating the need for platforms that provide access to multiple brain regions at different stages of development. We demonstrate the utility of organotypic whole hemisphere brain slices as a platform to probe regional and developmental changes in the brain extracellular environment. We also leverage whole hemisphere brain slices to characterize the impact of cerebral ischemia on different regions of brain tissue. Results Whole hemisphere brain slices taken from postnatal (P) day 10 and P17 rats retained viable, metabolically active cells through 14 days in vitro (DIV). Oxygen-glucose-deprivation (OGD), used to model a cerebral ischemic event in vivo, resulted in reduced slice metabolic activity and elevated cell death, regardless of slice age. Slices from P10 and P17 brains showed an oligodendrocyte and microglia-driven proliferative response after OGD exposure, higher than the proliferative response seen in DIV-matched normal control slices. Multiple particle tracking in oxygen-glucose-deprived brain slices revealed that oxygen-glucose-deprivation impacts the extracellular environment of brain tissue differently depending on brain age and brain region. In most instances, the extracellular space was most difficult to navigate immediately following insult, then gradually provided less hindrance to extracellular nanoparticle diffusion as time progressed. However, changes in diffusion were not universal across all brain regions and ages. Conclusions We demonstrate whole hemisphere brain slices from P10 and P17 rats can be cultured up to two weeks in vitro. These brain slices provide a viable platform for studying both normal physiological processes and injury associated mechanisms with control over brain age and region. Ex vivo OGD impacted cortical and striatal brain tissue differently, aligning with preexisting data generated in in vivo models. These data motivate the need to account for both brain region and age when investigating mechanisms of injury and designing potential therapies for cerebral ischemia. 
    more » « less
  5. Abstract Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments in chronic aphasia, particularly in perilesional tissue. Abnormal perfusion in this region may also serve as a biomarker for predicting functional improvements with behavioral treatment interventions. Using pseudo-continuous arterial spin labeling in magnetic resonance imaging (MRI), we examined perfusion in chronic aphasia, in perilesional rings in the left hemisphere and their right hemisphere homologues. In the left hemisphere we found a gradient pattern of decreasing perfusion closer to the lesion. The opposite pattern was found in the right hemisphere, with significantly increased perfusion close to the lesion homologue. Perfusion was also increased in the right hemisphere lesion homologue region relative to the surrounding tissue. We next examined changes in perfusion in two groups: one group who underwent MRI scanning before and after three months of a behavioral treatment intervention that led to significant language gains, and a second group who was scanned twice at a three-month interval without a treatment intervention. For both groups, there was no difference in perfusion over time in either the left or the right hemisphere. Moreover, within the treatment group pre-treatment perfusion scores did not predict treatment response; neither did pre-treatment perfusion predict post-treatment language performance. These results indicate that perfusion is chronically abnormal in both hemispheres, but chronically abnormal perfusion did not change in response to our behavioral treatment interventions, and did not predict responsiveness to language treatment. 
    more » « less