skip to main content


Title: Ensemble Machine Learning for Alzheimer’s disease Classification from Retinal Vasculature
Introduction: Alzheimer’s disease (AD) causes progressive irreversible cognitive decline and is the leading cause of dementia. Therefore, a timely diagnosis is imperative to maximize neurological preservation. However, current treatments are either too costly or limited in availability. In this project, we explored using retinal vasculature as a potential biomarker for early AD diagnosis. This project focuses on stage 3 of a three-stage modular machine learning pipeline which consisted of image quality selection, vessel map generation, and classification [1]. The previous model only used support vector machine (SVM) to classify AD labels which limited its accuracy to 82%. In this project, random forest and gradient boosting were added and, along with SVM, combined into an ensemble classifier, raising the classification accuracy to 89%. Materials and Methods: Subjects classified as AD were those who were diagnosed with dementia in “Dementia Outcome: Alzheimer’s disease” from the UK Biobank Electronic Health Records. Five control groups were chosen with a 5:1 ratio of control to AD patients where the control patients had the same age, gender, and eye side image as the AD patient. In total, 122 vessel images from each group (AD and control) were used. The vessel maps were then segmented from fundus images through U-net. A t-test feature selection was first done on the training folds and the selected features was fed into the classifiers with a p-value threshold of 0.01. Next, 20 repetitions of 5-fold cross validation were performed where the hyperparameters were solely tuned on the training data. An ensemble classifier consisting of SVM, gradient boosting tree, and random forests was built and the final prediction was made through majority voting and evaluated on the test set. Results and Discussion: Through ensemble classification, accuracy increased by 4-12% relative to the individual classifiers, precision by 9-15%, sensitivity by 2-9%, specificity by at least 9-16%, and F1 score by 712%. Conclusions: Overall, a relatively high classification accuracy was achieved using machine learning ensemble classification with SVM, random forest, and gradient boosting. Although the results are very promising, a limitation of this study is that the requirement of needing images of sufficient quality decreased the amount of control parameters that can be implemented. However, through retinal vasculature analysis, this project shows machine learning’s high potential to be an efficient, more cost-effective alternative to diagnosing Alzheimer’s disease. Clinical Application: Using machine learning for AD diagnosis through retinal images will make screening available for a broader population by being more accessible and cost-efficient. Mobile device based screening can also be enabled at primary screening in resource-deprived regions. It can provide a pathway for future understanding of the association between biomarkers in the eye and brain.  more » « less
Award ID(s):
1908299
NSF-PAR ID:
10296319
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biomedical Engineering Society Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Alzheimer's disease is the leading cause of dementia. The long progression period in Alzheimer's disease provides a possibility for patients to get early treatment by having routine screenings. However, current clinical diagnostic imaging tools do not meet the specific requirements for screening procedures due to high cost and limited availability. In this work, we took the initiative to evaluate the retina, especially the retinal vasculature, as an alternative for conducting screenings for dementia patients caused by Alzheimer's disease. Highly modular machine learning techniques were employed throughout the whole pipeline. Utilizing data from the UK Biobank, the pipeline achieved an average classification accuracy of 82.44%. Besides the high classification accuracy, we also added a saliency analysis to strengthen this pipeline's interpretability. The saliency analysis indicated that within retinal images, small vessels carry more information for diagnosing Alzheimer's diseases, which aligns with related studies. 
    more » « less
  2. Early detection of Alzheimer’s disease (AD) during the Mild Cognitive Impairment (MCI) stage could enable effective intervention to slow down disease progression. Computer-aided diagnosis of AD relies on a sufficient amount of biomarker data. When this requirement is not fulfilled, transfer learning can be used to transfer knowledge from a source domain with more amount of labeled data than available in the desired target domain. In this study, an instance-based transfer learning framework is presented based on the gradient boosting machine (GBM). In GBM, a sequence of base learners is built, and each learner focuses on the errors (residuals) of the previous learner. In our transfer learning version of GBM (TrGB), a weighting mechanism based on the residuals of the base learners is defined for the source instances. Consequently, instances with different distribution than the target data will have a lower impact on the target learner. The proposed weighting scheme aims to transfer as much information as possible from the source domain while avoiding negative transfer. The target data in this study was obtained from the Mount Sinai dataset which is collected and processed in a collaborative 5-year project at the Mount Sinai Medical Center. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset was used as the source domain. The experimental results showed that the proposed TrGB algorithm could improve the classification accuracy by 1.5 and 4.5% for CN vs. MCI and multiclass classification, respectively, as compared to the conventional methods. Also, using the TrGB model and transferred knowledge from the CN vs. AD classification of the source domain, the average score of early MCI vs. late MCI classification improved by 5%. 
    more » « less
  3. Abstract

    Alzheimer’s Disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia. Early diagnosis is critical for patients to benefit from potential intervention and treatment. The retina has emerged as a plausible diagnostic site for AD detection owing to its anatomical connection with the brain. However, existing AI models for this purpose have yet to provide a rational explanation behind their decisions and have not been able to infer the stage of the disease’s progression. Along this direction, we propose a novel model-agnostic explainable-AI framework, called Granu$$\underline{la}$$la̲r Neuron-le$$\underline{v}$$v̲el Expl$$\underline{a}$$a̲iner (LAVA), an interpretation prototype that probes into intermediate layers of the Convolutional Neural Network (CNN) models to directly assess the continuum of AD from the retinal imaging without the need for longitudinal or clinical evaluations. This innovative approach aims to validate retinal vasculature as a biomarker and diagnostic modality for evaluating Alzheimer’s Disease. Leveraged UK Biobank cognitive tests and vascular morphological features demonstrate significant promise and effectiveness of LAVA in identifying AD stages across the progression continuum.

     
    more » « less
  4. Purpose: Parkinson’s Disease (PD) is the second most common form of neural degeneration and defined by the decay of dopaminergic cells in the substantia nigra. The current standard for diagnosing PD occurs once 80% of dopaminergic cells have decayed. The degradation of these cells has been shown to create thinning of the retina walls and retina microvasculature. This work serves to find machine learning techniques to provide PD diagnosis using non-invasive fundus eye images. Materials and Methods: Two age and gender matched datasets where constructed using data from the UK Biobank (UKB) and data collected at the University of Florida (UF). The first dataset consists of 476 fundus eye images, 238 CN and 238 PD, sourced entirely from the UKB database. The second dataset, UF-UKB, consist of 100 images, 28 CN and 72 PD, collected at UF and 44 CN images from UKB. A second set of datasets, UKB-Green and UF-UKB-Green, were created using the green color channels to improve vessel segmentation. Vessel segmentation was performed using U-Net segmentation network. The vessel maps served as inputs to SVM classifying networks. Saliency maps were created to assess areas of interest for the networks. Results: The top performing SVM network for the UKB and UKB-Green datasets were the sigmoid SVM networks which achieved accuracies of .698 and .719 respectively. Meanwhile the top performing networks for the UF-UKB and UF-UKB-Green datasets where the linear SVM networks which achieved accuracies of .821 and .857 respectively. The saliency maps indicate that the different networks focused on different vessel structures with the most successful networks focusing more on smaller vessels. Conclusion: The results indicate that the machine learning networks can classify PD based on retina vasculature, with the key features being smaller blood vessels. The proposed methods further support the idea that changes in brain physiology can be observed in the eye. Machine learning networks can be applied to clinically available data and still provide accurate predictions Clinical Relevance statement, not to exceed 200 characters: The work illustrates the feasibility of utilizing eye images as a potential method for diagnosing PD, opposed to the current method of using motor symptoms. 
    more » « less
  5. Early diagnosis of Alzheimer’s Disease (AD) is challenging due to its progressive nature. This study proposes a comprehensive comparison of four classifiers combined with different dimensionality reduction methods to discriminate normal controls (CN) from pre-mild cognitive impairment (pMCI) and early MCI (EMCI) using multimodal datasets including MRIs, PETs, SUVr, clinician amyloid visual reads, and subjects demographics. The most robust classifier for CN vs. MCI is the Mutual Information Best Percentile - Bagging Classifier combination, with 73.91% accuracy and a 4.82% standard deviation (SD). The best performance of 65.23% (11.84% SD) accuracy for CN vs. EMCI was DTC with ANOVA. In comparing CN with pMCI the best classification accuracy was ANOVA-DTC 51.06% (14.19% SD). An accuracy of 56.34% (10.67% SD) was achieved by bagging with ANOVA for multiclass classification ofCN vs. pMCI vs. EMCI. 
    more » « less