- PAR ID:
- 10296408
- Date Published:
- Journal Name:
- AutomotiveUI 2021
- Page Range / eLocation ID:
- 20 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Objective This study develops a computational model to predict drivers’ response time and understand the underlying cognitive mechanism for freeway exiting takeovers in conditionally automated vehicles (AVs). Background Previous research has modeled drivers’ takeover response time in emergency scenarios that demand a quick response. However, existing models may not be applicable for scheduled, non-time-critical takeovers as drivers take longer to resume control when there is no time pressure. A model of driver response time in non-time-critical takeovers is lacking. Method A computational cognitive model of driver takeover response time is developed based on Queuing Network-Model Human Processor (QN-MHP) architecture. The model quantifies gaze redirection in response to takeover request (ToR), task prioritization, driver situation awareness, and driver trust to address the complexities of drivers' takeover strategies when sufficient time budget exists. Results Experimental data of a preliminary driving simulator study were used to validate the model. The model accounted for 97% of the experimental takeover response time for freeway exiting. Conclusion The current model can successfully predict drivers’ response time for scheduled, non-time-critical freeway exiting takeovers in conditionally AVs. Application This model can be applied to the human-machine interface design with respect to ToR lead time for enhancing safe freeway exiting takeovers in conditionally AVs. It also provides a foundation for future modeling work towards an integrated driver model of freeway exiting takeover performance.more » « less
-
Trust calibration poses a significant challenge in the interaction between drivers and automated vehicles (AVs) in the context of human-automation collaboration. To effectively calibrate trust, it becomes crucial to accurately measure drivers’ trust levels in real time, allowing for timely interventions or adjustments in the automated driving. One viable approach involves employing machine learning models and physiological measures to model the dynamic changes in trust. This study introduces a technique that leverages machine learning models to predict drivers’ real-time dynamic trust in conditional AVs using physiological measurements. We conducted the study in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition. Each condition had eight takeover requests (TORs) in different scenarios. Drivers’ physiological measures were recorded during the experiment, including galvanic skin response (GSR), heart rate (HR) indices, and eye-tracking metrics. Using five machine learning models, we found that eXtreme Gradient Boosting (XGBoost) performed the best and was able to predict drivers’ trust in real time with an f1-score of 89.1% compared to a baseline model of K -nearest neighbor classifier of 84.5%. Our findings provide good implications on how to design an in-vehicle trust monitoring system to calibrate drivers’ trust to facilitate interaction between the driver and the AV in real time.more » « less
-
This study proposes a novel methodology for modeling driver takeover behavior in conditionally automated vehicles (AVs) when exiting a freeway using deep learning (DL) network architectures. While previous research has focused on modeling takeover time in emergency scenarios, which require quick responses, these models may not be applicable to scheduled, non-time-critical takeovers. In such situations, drivers may employ varying strategies and take longer to resume control of the vehicle when there is no time pressure. To address this problem, a deep learning architecture based on a convolutional neural network (CNN) was implemented to predict drivers’ takeover behaviors in scheduled takeovers. The model was trained on drivers’ driving data and eye gaze with varying time windows, facilitating an analysis of drivers’ takeover decisions to various takeover request designs. The model achieved good performance metrics, with an F1 Score of 0.993, a recall of 0.996, and a precision of 0.991. The application of these models holds substantial potential for refining the design of the human-machine interface, specifically in calibrating the takeover request (ToR) lead time, thereby promoting safe freeway exiting takeovers in conditionally AVs.
-
As of early 2023, only a limited number of Society of Automotive Engineers (SAE) Level 3 (L3) automated driving systems are available on the market, and they are primarily offered by luxury vehicle brands. SAE L3 automated driving systems are classified as conditional automation (CA), meaning that the vehicle can undertake some well-defined driving tasks under specific conditions, but the driver must be ready to assume control of the vehicle when prompted by the system. It is anticipated that an increasing number of L3 CA systems will be introduced on public roads in the next few years. However, L3 systems pose unique Human Factors (HF) challenges that require thoughtful consideration to ensure that production systems are feasible without compromising driver or road safety. This panel discussion brings together HF researchers and practitioners with expertise in human behavior and usability design for automotive applications to discuss and delineate key issues specifically related to L3 systems, as well as potential approaches to tackle these issues.
-
Abstract We conduct a stated‐preference choice experiment to reveal motorists' driving‐related behavioral responses to different types of signs indicating that the road is flooded and travel costs associated with avoidance of the flooded road. We use three flood‐indicating visualization treatments and control group to identify the effects of particular road signs and identify associations between drivers' behavior and their demographic characteristics and the cost (time) of taking an alternate route. Using responses from 714 adult participants from the coastal area of the Mid‐Atlantic of the United States, we estimate willingness to drive additional minutes to avoid flooded roads using a random utility framework. Our results suggest that individuals are more likely to avoid flooded roads when shown flood‐indicating road signs that do not indicate the exact depth of the water and signs that indicate that the water is relatively deep (more than 12 in.). We further find that individuals tend to persist in their initial choices. They often make risky choices when high risk‐indicating information is presented at the beginning of the decision‐making process. The results of this study can help inform the sign design choices of transportation managers to help ensure driver safety in flood conditions.