We conduct a stated‐preference choice experiment to reveal motorists' driving‐related behavioral responses to different types of signs indicating that the road is flooded and travel costs associated with avoidance of the flooded road. We use three flood‐indicating visualization treatments and control group to identify the effects of particular road signs and identify associations between drivers' behavior and their demographic characteristics and the cost (time) of taking an alternate route. Using responses from 714 adult participants from the coastal area of the Mid‐Atlantic of the United States, we estimate willingness to drive additional minutes to avoid flooded roads using a random utility framework. Our results suggest that individuals are more likely to avoid flooded roads when shown flood‐indicating road signs that do not indicate the exact depth of the water and signs that indicate that the water is relatively deep (more than 12 in.). We further find that individuals tend to persist in their initial choices. They often make risky choices when high risk‐indicating information is presented at the beginning of the decision‐making process. The results of this study can help inform the sign design choices of transportation managers to help ensure driver safety in flood conditions.
more » « less- Award ID(s):
- 1757353
- PAR ID:
- 10360051
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Flood Risk Management
- Volume:
- 14
- Issue:
- 4
- ISSN:
- 1753-318X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.more » « less
-
Flood risk communication is imperative to aiding people’s decision making in flood situations. These warnings can be communicated through navigation applications on mobile devices. The current study investigated how flood-depth information affected drivers’ actions given flood warnings from a mobile navigation application in a driving simulator. This study manipulated the type of flood warning presented to the participants in the driving scenarios and measured their actions given a potentially flooded roadway. Participants experienced six drives with different flood warning conditions. Results indicated that providing flood depth information helped drivers accurately estimate the depth of the flood and their perceived risks; including more detailed information was helpful for drivers to make informed decisions regarding a flooded roadway. We suggest that designers include flood depth information to help drivers accurately perceive the depth and risk regarding a flooded roadway.
-
Rising waters and land subsidence are increasing relative sea levels in western and northern Alaska, forcing communities to relocate or armor in place. To appropriately plan and make equitable decisions, there is a need to forecast the risk of flood exposure in coastal Alaskan communities and to evaluate methods to mitigate that risk. This paper conducts use-inspired science to evaluate the current and future flood exposure of roads in Hooper Bay, Alaska, proposes a unit cost of flood exposure to estimate the cost of flooding, and compares various mitigation efforts including elevating roads and building dikes. Nine historic storms and their associated flood depths were subject to return-period analysis and modeled for several sea level rise scenarios. Based on the simulated road flood exposure (km hours/storm), and the storm-return period, an annual flood exposure (km hours/year) was computed. Then, the unit cost of flood exposure (USD/km hours) was determined as the ratio of the cost of flood mitigation (USD/year) to the annual flood exposure mitigated by the project. The analysis found that the unit cost of flood exposure, in conjunction with flood exposure calculations, does provide an approximate flood risk calculation, though a unitized cost of flood exposure needs to be divided into lump sum costs and materials costs. The analysis also found that dikes may be a more cost-effective alternative than road elevation. The flood risk calculation, based on the unit cost of flood exposure, could be made for all of the communities in a given region to identify those communities that face a high flood risk. Furthermore, if one divides the unit cost of flood exposure by the population, one obtains a cost/benefit ratio that potentially could be used to prioritize flood mitigation work.more » « less
-
Abstract The adverse effect of climate change continues to expand, and the risks of flooding are increasing. Despite advances in network science and risk analysis, we lack a systematic mathematical framework for road network percolation under the disturbance of flooding. The difficulty is rooted in the unique three-dimensional nature of a flood, where altitude plays a critical role as the third dimension, and the current network-based framework is unsuitable for it. Here we develop a failure model to study the effect of floods on road networks; the result covers 90.6% of road closures and 94.1% of flooded streets resulting from Hurricane Harvey. We study the effects of floods on road networks in China and the United States, showing a discontinuous phase transition, indicating that a small local disturbance may lead to a large-scale systematic malfunction of the entire road network at a critical point. Our integrated approach opens avenues for understanding the resilience of critical infrastructure networks against floods.
-
We studied processes of ice-wedge degradation and stabilization at three sites adjacent to road infrastructure in the Prudhoe Bay Oilfield, Alaska, USA. We examined climatic, environmental, and subsurface conditions and evaluated vulnerability of ice wedges to thermokarst in undisturbed and road-affected areas. Vulnerability of ice wedges strongly depends on the structure and thickness of soil layers above ice wedges, including the active, transient, and intermediate layers. In comparison with the undisturbed area, sites adjacent to the roads had smaller average thicknesses of the protective intermediate layer (4 cm vs. 9 cm), and this layer was absent above almost 60% of ice wedges (vs. ∼45% in undisturbed areas). Despite the strong influence of infrastructure, ice-wedge degradation is a reversible process. Deepening of troughs during ice-wedge degradation leads to a substantial increase in mean annual ground temperatures but not in thaw depths. Thus, stabilization of ice wedges in the areas of cold continuous permafrost can occur despite accumulation of snow and water in the troughs. Although thermokarst is usually more severe in flooded areas, higher plant productivity, more litter, and mineral material (including road dust) accumulating in the troughs contribute to formation of the intermediate layer, which protects ice wedges from further melting.more » « less