skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Adversarial Bandits with Corruptions
This paper studies adversarial bandits with corruptions. In the basic adversarial bandit setting, the reward of arms is predetermined by an adversary who is oblivious to the learner’s policy. In this paper, we consider an extended setting in which an attacker sits in-between the environment and the learner, and is endowed with a limited budget to corrupt the reward of the selected arm. We have two main results. First, we derive a lower bound on the regret of any bandit algorithm that is aware of the budget of the attacker. Also, for budget-agnostic algorithms, we characterize an impossibility result demonstrating that even when the attacker has a sublinear budget, i.e., a budget growing sublinearly with time horizon T, they fail to achieve a sublinear regret. Second, we propose ExpRb, a bandit algorithm that incorporates a biased estimator and a robustness parameter to deal with corruption. We characterize the regret of ExpRb as a function of the corruption budget and show that for the case of a known corruption budget, the regret of ExpRb is tight.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of multiple rounds is maximum, and each one of them has an expected cost below a certain threshold. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove a sublinear bound on its regret that is inversely proportional to the difference between the constraint threshold and the cost of a known feasible action. Our algorithm balances exploration and constraint satisfaction using a novel idea that scales the radii of the reward and cost confidence sets with different scaling factors. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting and prove a a regret bound that is better than simply casting multi-armed bandits as an instance of linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results. Finally, we show how our algorithm and analysis can be extended to multiple constraints and to the case when the cost of the feasible action is unknown. 
    more » « less
  2. Contextual bandit algorithms have become widely used for recommendation in online systems (e.g. marketplaces, music streaming, news), where they now wield substantial influence on which items get shown to users. This raises questions of fairness to the items — and to the sellers, artists, and writers that benefit from this exposure. We argue that the conventional bandit formulation can lead to an undesirable and unfair winner-takes-all allocation of exposure. To remedy this problem, we propose a new bandit objective that guarantees merit-based fairness of exposure to the items while optimizing utility to the users. We formulate fairness regret and reward regret in this setting and present algorithms for both stochastic multi-armed bandits and stochastic linear bandits. We prove that the algorithms achieve sublinear fairness regret and reward regret. Beyond the theoretical analysis, we also provide empirical evidence that these algorithms can allocate exposure to different arms effectively. 
    more » « less
  3. Koyejo, S. ; Mohamed, S. ; Agarwal, A. ; Belgrave, D. ; Cho, K. ; Oh, A. (Ed.)
    In the stochastic contextual bandit setting, regret-minimizing algorithms have been extensively researched, but their instance-minimizing best-arm identification counterparts remain seldom studied. In this work, we focus on the stochastic bandit problem in the (ǫ, δ)-PAC setting: given a policy class Π the goal of the learner is to return a policy π ∈ Π whose expected reward is within ǫ of the optimal policy with probability greater than 1 − δ. We characterize the first instance-dependent PAC sample complexity of contextual bandits through a quantity ρΠ, and provide matching upper and lower bounds in terms of ρΠ for the agnostic and linear contextual best-arm identification settings. We show that no algorithm can be simultaneously minimax-optimal for regret minimization and instance-dependent PAC for best-arm identification. Our main result is a new instance-optimal and computationally efficient algorithm that relies on a polynomial number of calls to an argmax oracle. 
    more » « less
  4. The dueling bandits problem has received a lot of attention in recent years due to its applications in recommendation systems and information retrieval. However, due to the prevalence of malicious users in these systems, it is becoming increasingly important to design dueling bandit algorithms that are robust to corruptions introduced by these malicious users. In this paper we study dueling bandits in the presence of an adversary that can corrupt some of the feedback received by the learner. We propose an algorithm for this problem that is agnostic to the amount of corruption introduced by the adversary: its regret degrades gracefully with the amount of corruption, and in case of no corruption, it essentially matches the optimal regret bounds achievable in the purely stochastic dueling bandits setting. 
    more » « less
  5. We extend the classic multi-armed bandit (MAB) model to the setting of noncompliance, where the arm pull is a mere instrument and the treatment applied may differ from it, which gives rise to the instrument-armed bandit (IAB) problem. The IAB setting is relevant whenever the experimental units are human since free will, ethics, and the law may prohibit unrestricted or forced application of treatment. In particular, the setting is relevant in bandit models of dynamic clinical trials and other controlled trials on human interventions. Nonetheless, the setting has not been fully investigate in the bandit literature. We show that there are various and divergent notions of regret in this setting, all of which coincide only in the classic MAB setting. We characterize the behavior of these regrets and analyze standard MAB algorithms. We argue for a particular kind of regret that captures the causal effect of treatments but show that standard MAB algorithms cannot achieve sublinear control on this regret. Instead, we develop new algorithms for the IAB problem, prove new regret bounds for them, and compare them to standard MAB algorithms in numerical examples. 
    more » « less