skip to main content


Title: TransCrossCF: Transition-based Cross-Domain Collaborative Filtering
The success of cross-domain recommender systems in capturing user interests across multiple domains has recently brought much attention to them. These recommender systems aim to improve the quality of suggestions and defy the cold-start problem by transferring information from one (or more) source domain(s) to a target domain. However, most cross-domain recommenders ignore the sequential information in user history. They only rely on an aggregate or snapshot of user feedback in the past. Most importantly, they do not explicitly model how users transition from one domain to another domain as users continue to interact with different item domains. In this paper, we argue that between-domain transitions in user sequences are useful in improving recommendation quality, dealing with the cold-start problem, and revealing interesting aspects of how user interests transform from one domain to another. We propose TransCrossCF, transition-based cross-domain collaborative filtering, that can capture both within and between domain transitions of user feedback sequences while understanding the relationship between different item types in different domains. Specifically, we model each purchase of a user as a transition from his/her previous item to the next one, under the effect of item domains and user preferences. Our intensive experiments demonstrate that TransCrossCF outperforms the state-of-the-art methods in recommendation task on three real-world datasets, both in the cold-start and hot-start scenarios. Moreover, according to our context analysis evaluations, the between-domain relations captured by TransCrossCF are interpretable and intuitive.  more » « less
Award ID(s):
1755910
NSF-PAR ID:
10296473
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)
Page Range / eLocation ID:
320 to 327
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cross-domain collaborative filtering recommenders exploit data from other domains (e.g., movie ratings) to predict users’ interests in a different target domain (e.g., suggest music). Most current cross-domain recommenders focus on modeling user ratings but pay limited attention to user reviews. Additionally, due to the complexity of these recommender systems, they cannot provide any information to users to support user decisions. To address these challenges, we propose Deep Hybrid Cross Domain (DHCD) model, a cross-domain neural framework, that can simultaneously predict user ratings, and provide useful information to strengthen the suggestions and support user decision across multiple domains. Specifically, DHCD enhances the predicted ratings by jointly modeling two crucial facets of users’ product assessment: ratings and reviews. To support decisions, it models and provides natural review-like sentences across domains according to user interests and item features. This model is robust in integrating user rating and review information from more than two domains. Our extensive experiments show that DHCD can significantly outperform advanced baselines in rating predictions and review generation tasks. For rating prediction tasks, it outperforms cross-domain and single-domain collaborative filtering as well as hybrid recommender systems. Furthermore, our review generation experiments suggest an improved perplexity score and transfer of review information in DHCD. 
    more » « less
  2. Recommender systems (RSs) have become an indispensable part of online platforms. With the growing concerns of algorithmic fairness, RSs are not only expected to deliver high-quality personalized content, but are also demanded not to discriminate against users based on their demographic information. However, existing RSs could capture undesirable correlations between sensitive features and observed user behaviors, leading to biased recommendations. Most fair RSs tackle this problem by completely blocking the influences of sensitive features on recommendations. But since sensitive features may also affect user interests in a fair manner (e.g., race on culture-based preferences), indiscriminately eliminating all the influences of sensitive features inevitably degenerate the recommendations quality and necessary diversities. To address this challenge, we propose a path-specific fair RS (PSF-RS) for recommendations. Specifically, we summarize all fair and unfair correlations between sensitive features and observed ratings into two latent proxy mediators, where the concept of path-specific bias (PS-Bias) is defined based on path-specific counterfactual inference. Inspired by Pearl's minimal change principle, we address the PS-Bias by minimally transforming the biased factual world into a hypothetically fair world, where a fair RS model can be learned accordingly by solving a constrained optimization problem. For the technical part, we propose a feasible implementation of PSF-RS, i.e., PSF-VAE, with weakly-supervised variational inference, which robustly infers the latent mediators such that unfairness can be mitigated while necessary recommendation diversities can be maximally preserved simultaneously. Experiments conducted on semi-simulated and real-world datasets demonstrate the effectiveness of PSF-RS. 
    more » « less
  3. null (Ed.)
    Sequential recommendation is the task of predicting the next items for users based on their interaction history. Modeling the dependence of the next action on the past actions accurately is crucial to this problem. Moreover, sequential recommendation often faces serious sparsity of item-to-item transitions in a user's action sequence, which limits the practical utility of such solutions. To tackle these challenges, we propose a Category-aware Collaborative Sequential Recommender. Our preliminary statistical tests demonstrate that the in-category item-to-item transitions are often much stronger indicators of the next items than the general item-to-item transitions observed in the original sequence. Our method makes use of item category in two ways. First, the recommender utilizes item category to organize a user's own actions to enhance dependency modeling based on her own past actions. It utilizes self-attention to capture in-category transition patterns, and determines which of the in-category transition patterns to consider based on the categories of recent actions. Second, the recommender utilizes the item category to retrieve users with similar in-category preferences to enhance collaborative learning across users, and thus conquer sparsity. It utilizes attention to incorporate in-category transition patterns from the retrieved users for the target user. Extensive experiments on two large datasets prove the effectiveness of our solution against an extensive list of state-of-the-art sequential recommendation models. 
    more » « less
  4. Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile. 
    more » « less
  5. Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile. 
    more » « less