Currently, there is a surge of interest in fair Artificial Intelligence (AI) and Machine Learning (ML) research which aims to mitigate discriminatory bias in AI algorithms, e.g., along lines of gender, age, and race. While most research in this domain focuses on developing fair AI algorithms, in this work, we examine the challenges which arise when humans and fair AI interact. Our results show that due to an apparent conflict between human preferences and fairness, a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world. Using college major recommendation as a case study, we build a fair AI recommender by employing gender debiasing machine learning techniques. Our offline evaluation showed that the debiased recommender makes fairer career recommendations without sacrificing its accuracy in prediction. Nevertheless, an online user study of more than 200 college students revealed that participants on average prefer the original biased system over the debiased system. Specifically, we found that perceived gender disparity is a determining factor for the acceptance of a recommendation. In other words, we cannot fully address the gender bias issue in AI recommendations without addressing the gender bias in humans. We conducted a follow-up survey to gain additional insights into the effectiveness of various design options that can help participants to overcome their own biases. Our results suggest that making fair AI explainable is crucial for increasing its adoption in the real world.
more »
« less
Path-Specific Counterfactual Fairness for Recommender Systems
Recommender systems (RSs) have become an indispensable part of online platforms. With the growing concerns of algorithmic fairness, RSs are not only expected to deliver high-quality personalized content, but are also demanded not to discriminate against users based on their demographic information. However, existing RSs could capture undesirable correlations between sensitive features and observed user behaviors, leading to biased recommendations. Most fair RSs tackle this problem by completely blocking the influences of sensitive features on recommendations. But since sensitive features may also affect user interests in a fair manner (e.g., race on culture-based preferences), indiscriminately eliminating all the influences of sensitive features inevitably degenerate the recommendations quality and necessary diversities. To address this challenge, we propose a path-specific fair RS (PSF-RS) for recommendations. Specifically, we summarize all fair and unfair correlations between sensitive features and observed ratings into two latent proxy mediators, where the concept of path-specific bias (PS-Bias) is defined based on path-specific counterfactual inference. Inspired by Pearl's minimal change principle, we address the PS-Bias by minimally transforming the biased factual world into a hypothetically fair world, where a fair RS model can be learned accordingly by solving a constrained optimization problem. For the technical part, we propose a feasible implementation of PSF-RS, i.e., PSF-VAE, with weakly-supervised variational inference, which robustly infers the latent mediators such that unfairness can be mitigated while necessary recommendation diversities can be maximally preserved simultaneously. Experiments conducted on semi-simulated and real-world datasets demonstrate the effectiveness of PSF-RS.
more »
« less
- PAR ID:
- 10434606
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
- ISBN:
- 9798400701030
- Format(s):
- Medium: X
- Location:
- Long Beach CA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, there has been growing interest in developing the next-generation recommender systems (RSs) based on pretrained large language models (LLMs). However, the semantic gap between natural language and recommendation tasks is still not well addressed, leading to multiple issues such as spuriously correlated user/item descriptors, ineffective language modeling on user/item data, inefficient recommendations via auto-regression, etc. In this paper, we propose CLLM4Rec, the first generative RS that tightly integrates the LLM paradigm and ID paradigm of RSs, aiming to address the above challenges simultaneously. We first extend the vocabulary of pretrained LLMs with user/item ID tokens to faithfully model user/item collaborative and content semantics. Accordingly, a novel soft+hard prompting strategy is proposed to effectively learn user/item collaborative/content token embeddings via language modeling on RS-specific corpora, where each document is split into a prompt consisting of heterogeneous soft (user/item) tokens and hard (vocab) tokens and a main text consisting of homogeneous item tokens or vocab tokens to facilitate stable and effective language modeling. In addition, a novel mutual regularization strategy is introduced to encourage CLLM4Rec to capture recommendation-related information from noisy user/item content. Finally, we propose a novel recommendation-oriented finetuning strategy for CLLM4Rec, where an item prediction head with multinomial likelihood is added to the pretrained CLLM4Rec backbone to predict hold-out items based on soft+hard prompts established from masked user-item interaction history, where recommendations of multiple items can be generated efficiently without hallucination.more » « less
-
Graph Neural Networks (GNNs) have shown great power in learning node representations on graphs. However, they may inherit historical prejudices from training data, leading to discriminatory bias in predictions. Although some work has developed fair GNNs, most of them directly borrow fair representation learning techniques from non-graph domains without considering the potential problem of sensitive attribute leakage caused by feature propagation in GNNs. However, we empirically observe that feature propagation could vary the correlation of previously innocuous non-sensitive features to the sensitive ones. This can be viewed as a leakage of sensitive information which could further exacerbate discrimination in predictions. Thus, we design two feature masking strategies according to feature correlations to highlight the importance of considering feature propagation and correlation variation in alleviating discrimination. Motivated by our analysis, we propose Fair View Graph Neural Network (FairVGNN) to generate fair views of features by automatically identifying and masking sensitive-correlated features considering correlation variation after feature propagation. Given the learned fair views, we adaptively clamp weights of the encoder to avoid using sensitive-related features. Experiments on real-world datasets demonstrate that FairVGNN enjoys a better trade-off between model utility and fairness.more » « less
-
As learning-to-rank models are increasingly deployed for decision-making in areas with profound life implications, the FairML community has been developing fair learning-to-rank (LTR) models. These models rely on the availability of sensitive demographic features such as race or sex. However, in practice, regulatory obstacles and privacy concerns protect this data from collection and use. As a result, practitioners may either need to promote fairness despite the absence of these features or turn to demographic inference tools to attempt to infer them. Given that these tools are fallible, this paper aims to further understand how errors in demographic inference impact the fairness performance of popular fair LTR strategies. In which cases would it be better to keep such demographic attributes hidden from models versus infer them? We examine a spectrum of fair LTR strategies ranging from fair LTR with and without demographic features hidden versus inferred to fairness-unaware LTR followed by fair re-ranking. We conduct a controlled empirical investigation modeling different levels of inference errors by systematically perturbing the inferred sensitive attribute. We also perform three case studies with real-world datasets and popular open-source inference methods. Our findings reveal that as inference noise grows, LTR-based methods that incorporate fairness considerations into the learning process may increase bias. In contrast, fair re-ranking strategies are more robust to inference errors. All source code, data, and experimental artifacts of our experimental study are available here: https://github.com/sewen007/hoiltr.gitmore » « less
-
Tensor-based methods have shown promise in improving upon traditional matrix factorization methods for recommender systems. But tensors may achieve improved recommendation quality while worsening the fairness of the recommendations. Hence, we propose a novel fairness-aware tensor recommendation framework that is designed to maintain quality while dramatically improving fairness. Four key aspects of the proposed framework are: (i) a new sensitive latent factor matrix for isolating sensitive features; (ii) a sensitive information regularizer that extracts sensitive information which can taint other latent factors; (iii) an effective algorithm to solve the proposed optimization model; and (iv) extension to multi-feature and multi-category cases which previous efforts have not addressed. Extensive experiments on real-world and synthetic datasets show that the framework enhances recommendation fairness while preserving recommendation quality in comparison with state-of-the-art alternatives.more » « less
An official website of the United States government

