skip to main content

Title: Computer Science Intensive Intervention to Prepare and Engage Underrepresented Novice Students at Community College
As open-access institutions serving diverse student populations, community colleges are perfect settings for broadening participation in computing efforts in higher education. The very nature of open access, however, places students with a wide variety of previous experience in the same introductory computer science classroom, intimidating the students with little programming exposure, many of whom are traditionally underrepresented in computer science. This paper reports on a pre-semester, intensive program designed to increase the computer science confidence and motivation of students with no previous programming exposure implemented at a community college in California. Framed using social cognitive career theory, results from the accompanying research project indicate preliminary success; we found the program to be well received by the majority of students, who had increased self-efficacy and interest in computer science. Implications for practice and research are discussed.
Authors:
; ; ;
Award ID(s):
1900153
Publication Date:
NSF-PAR ID:
10296482
Journal Name:
Community College Journal of Research and Practice
Page Range or eLocation-ID:
1 to 13
ISSN:
1066-8926
Sponsoring Org:
National Science Foundation
More Like this
  1. Wright College, an urban open-access community college, independently accredited within a larger community college system, is a federally recognized Hispanic-Serving Institution (HSI) with the largest community college enrollment of Hispanic students in its state. In 2018, Wright College received an inaugural National Science Foundation-Hispanic Serving Institution (NSF:HSI) research project grant “Building Capacity: Building Bridges into Engineering and Computer Science”. The project's overall goals are to increase underrepresented students pursuing an associate degree (AES) in engineering and computer science and streamline two transitions: high school to community college and 2-year to 4-year institutions. Through the grant, Wright College created a holistic and programmatic framework that examines and correlates engineering students' self-efficacy (the belief that students will succeed as engineers) and a sense of belonging with student success. The project focuses on Near-STEM ready students (students who need up to four semesters of math remediation before moving into Calculus 1). The project assesses qualitative and quantitative outcomes through surveys and case study interviews supplemented with retention, persistence, transfer, associate and bachelor's degree completion rates, and time for degree completion. The key research approach is to correlate student success data with self-efficacy and belonging measures. Outcomes and Impacts Three years into the project,more »Wright College Engineering and Computer Science Program was able to: • Develop and implement the Contextualized Summer Bridge with a total of 132 Near-STEM participants. One hundred twenty-seven (127) completed; 100% who completed the Bridge eliminated up to two years of math remediation, and 54% were directly placed in Calculus 1. All successful participants were placed in different engineering pathways, and 11 students completed Associate in Engineering Science (AES) and transferred after two years from the Bridge. • Increase enrollment by 940% (25 to 235 students) • Retain 93% of first-year students (Fall to fall retention). Seventy-five percent (75%) transferred after two years from initial enrollment. • Develop a holistic and programmatic approach for transfer model, thus increasing partnerships with 4-year transfer institutions resulting in the expansion of guaranteed/dual admissions programs with scholarships, paid research experience, dual advising, and students transferring as juniors. • Increase diversity at Wright College by bridging the academic gap for Near-STEM ready students. • Increase self-efficacy and belonging among all Program participants. • Increase institutionalized collaborations responsible for Wright College's new designation as the Center of Excellence for Engineering and Computer Science. • Increase enrollment, retention, and transfer of Hispanic students instrumental for Wright College Seal of Excelencia recognition. Lessons Learned The framework established during the first year of the grant overwhelmingly increased belonging and self-efficacy correlated with robust outcomes. However, the COVID-19 pandemic provided new challenges and opportunities in the second and third years of the grant. While adaptations were made to compensate for the negative impact of the pandemic, the face-to-face interactions were critical to support students’ entry into pathways and persistence within the Program.« less
  2. Wright College, an open-access community college in northwest Chicago, is an independently accredited institution in the City Colleges of Chicago (CCC) system. Wright is federally recognized Hispanic-Serving Institution (HSI) with the largest enrollment of Hispanic students in Illinois. In 2015 Wright piloted a selective guaranteed admission program to the Grainer College of Engineering at the University of Illinois at Urbana-Champaign (UIUC). Students in the Engineering Pathways (EP) program follow a cohort system with rigorous curriculum aligned to UIUC. From this pilot Wright built programmatic frameworks (one-stop intentional advising; mandatory tutoring, near-peer, faculty and professional mentoring; and access to professional organizations) to support EP students. Initial results were positive: 89% transfer rate and 89% bachelor’s degree completion. Building from the EP frameworks, Wright obtained a National Science Foundation (NSF) HSI research grant to expand programs to non-pathway students. Through the grant, Building Bridges into Engineering and Computer Science, the college developed assessment tools, increased the number of 4-year partnerships, and designed and implemented an Engineering Summer Bridge with curriculum contextualized for the needs of the Near-STEM ready students. These students need one to four semesters of Math remediation before moving into the EP. The college measured the Bridge participants' success throughmore »analysis of Math proficiency before and after the Bridge, professional identity (sense of belonging) and self-efficacy (the belief that the students will succeed as engineers). Surveys and case study interviews are being supplemented with retention, persistence, transfer, associate and bachelor degree completion rates, and time for degree completion. The key research question is the correlation of these data with self-efficacy and professional identity measures. Preliminary Results: 1) Sixty percent (60%) of the Bridge participants eliminated the remedial Math requirement completely. (Increased Math proficiency) 2) Engineering admission and enrollment doubled. 4) Increased institutionalized collaborations: the creation of a more programmatic admission, advising, transfer, rigorous curriculum, and other student support services within the College. 5) Increased partnerships with 4-year transfer institutions resulting in the expansion of guaranteed/dual admissions programs with scholarships, paid research experience, dual advising, and students transferring as juniors. 5) Increased diversity in Engineering and Computer Science student population. Wright will share an overview of the Building Bridges into Engineering and Computer Science project, research design, expanded practices, assessments and insights from the development and implementation of this program. The developed frameworks will be applied to provide ALL students at Wright, and at CCC equitable Engineering and Computer Science education.« less
  3. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences canmore »be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce.« less
  4. Hacisalihoglu, Gokhan (Ed.)
    In many areas of science, the ability to use computers to process, analyze, and visualize large data sets has become essential. The mismatch between the ability to generate large data sets and the computing skill to analyze them is arguably the most striking within the life sciences. The Digital Image and Vision Applications in Science (DIVAS) project describes a scaffolded series of interventions implemented over the span of a year to build the coding and computing skill of undergraduate students majoring primarily in the natural sciences. The program is designed as a community of practice, providing support within a network of learners. The program focus, images as data, provides a compelling ‘hook’ for participating scholars. Scholars begin the program with a one-credit spring semester seminar where they are exposed to image analysis. The program continues in the summer with a one-week, intensive Python and image processing workshop. From there, scholars tackle image analysis problems using a pair programming approach and can finish the summer with independent research. Finally, scholars participate in a follow-up seminar the subsequent spring and help onramp the next cohort of incoming scholars. We observed promising growth in participant self-efficacy in computing that was maintained throughout themore »project as well as significant growth in key computational skills. DIVAS program funding was able to support seventeen DIVAS over three years, with 76% of DIVAS scholars identifying as women and 14% of scholars identifying as members of an underrepresented minority group. Most scholars (82%) entered the program as first year students, with 94% of DIVAS scholars retained for the duration of the program and 100% of scholars remaining a STEM major one year after completing the program. The outcomes of the DIVAS project support the efficacy of building computational skill through repeated exposure of scholars to relevant applications over an extended period within a community of practice.« less
  5. Over the past 20 years, the explosion of genomic data collection and the cloud computing revolution have made computational and data science research accessible to anyone with a web browser and an internet connection. However, students at institutions with limited resources have received relatively little exposure to curricula or professional development opportunities that lead to careers in genomic data science. To broaden participation in genomics research, the scientific community needs to support these programs in local education and research at underserved institutions (UIs). These include community colleges, historically Black colleges and universities, Hispanic-serving institutions, and tribal colleges and universities that support ethnically, racially, and socioeconomically underrepresented students in the United States. We have formed the Genomic Data Science Community Network to support students, faculty, and their networks to identify opportunities and broaden access to genomic data science. These opportunities include expanding access to infrastructure and data, providing UI faculty development opportunities, strengthening collaborations among faculty, recognizing UI teaching and research excellence, fostering student awareness, developing modular and open-source resources, expanding course-based undergraduate research experiences (CUREs), building curriculum, supporting student professional development and research, and removing financial barriers through funding programs and collaborator support.