skip to main content


Title: Barium stars as tracers of s -process nucleosynthesis in AGB stars: II. Using machine learning techniques on 169 stars
Context. Barium (Ba) stars are characterised by an abundance of heavy elements made by the slow neutron capture process ( s -process). This peculiar observed signature is due to the mass transfer from a stellar companion, bound in a binary stellar system, to the Ba star observed today. The signature is created when the stellar companion is an asymptotic giant branch (AGB) star. Aims. We aim to analyse the abundance pattern of 169 Ba stars using machine learning techniques and the AGB final surface abundances predicted by the F RUITY and Monash stellar models. Methods. We developed machine learning algorithms that use the abundance pattern of Ba stars as input to classify the initial mass and metallicity of each Ba star’s companion star using stellar model predictions. We used two algorithms. The first exploits neural networks to recognise patterns, and the second is a nearest-neighbour algorithm that focuses on finding the AGB model that predicts the final surface abundances closest to the observed Ba star values. In the second algorithm, we included the error bars and observational uncertainties in order to find the best-fit model. The classification process was based on the abundances of Fe, Rb, Sr, Zr, Ru, Nd, Ce, Sm, and Eu. We selected these elements by systematically removing s -process elements from our AGB model abundance distributions and identifying the elements whose removal had the biggest positive effect on the classification. We excluded Nb, Y, Mo, and La. Our final classification combined the output of both algorithms to identify an initial mass and metallicity range for each Ba star companion. Results. With our analysis tools, we identified the main properties for 166 of the 169 Ba stars in the stellar sample. The classifications based on both stellar sets of AGB final abundances show similar distributions, with an average initial mass of M = 2.23 M ⊙ and 2.34 M ⊙ and an average [Fe/H] = −0.21 and −0.11, respectively. We investigated why the removal of Nb, Y, Mo, and La improves our classification and identified 43 stars for which the exclusion had the biggest effect. We found that these stars have statistically significant and different abundances for these elements compared to the other Ba stars in our sample. We discuss the possible reasons for these differences in the abundance patterns.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10464299
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
672
ISSN:
0004-6361
Page Range / eLocation ID:
A143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a detailed chemical abundance analysis of the brightest star in the ultrafaint dwarf (UFD) galaxy candidate Cetus II from high-resolution Magellan/MIKE spectra. For this star, DES J011740.53-173053, abundances or upper limits of 18 elements from carbon to europium are derived. Its chemical abundances generally follow those of other UFD galaxy stars, with a slight enhancement of theα-elements (Mg, Si, and Ca) and low neutron-capture element (Sr, Ba, and Eu) abundances supporting the classification of Cetus II as a likely UFD. The star exhibits lower Sc, Ti, and V abundances than Milky Way (MW) halo stars with similar metallicity. This signature is consistent with yields from a supernova originating from a star with a mass of ∼11.2M. In addition, the star has a potassium abundance of [K/Fe] = 0.81, which is somewhat higher than the K abundances of MW halo stars with similar metallicity, a signature that is also present in a number of UFD galaxies. A comparison including globular clusters and stellar stream stars suggests that high K is a specific characteristic of some UFD galaxy stars and can thus be used to help classify objects as UFD galaxies.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We study the production of barium (Ba) and strontium (Sr) in ultrafaint dwarf (UFDs) galaxies. Both r- and s- processes produce these elements, and one can infer the contribution of the r-process from the characteristic r-process abundance pattern, whereas the s-process contribution remains largely unknown. We show that the current s-process yield from asymptotic giant branch (AGB) stars is not sufficient to explain the Ba and Sr abundances observed in UFDs. Production of these elements would need to be efficient from the beginning of star formation in the galaxies. The discrepancy of nearly or more than 1 dex is not reconciled even if we consider s-process in super-AGB stars. We consider a possible resolution by assuming rotating massive stars (RMSs) and electron-capture supernovae (ECSNe) as additional contributors. We find that the RMSs could be the origin of Ba in UFDs if ∼10 per cent of massive stars are rotating at 300 km s−1. As for ECSNe, we argue that their fraction is less than 2 per cent of core-collapse supernova. It narrows the progenitor mass-range to ${\lesssim}0.1\, \mathrm{M}_\odot$ at −3 ≲ [Fe/H] ≲ −2. We also explore another resolution by modifying the stellar initial mass function (IMF) in UFDs and find a top-light IMF model that reproduces the observed level of Ba-enrichment. Future observations that determine or tightly constrain the europium and nitrogen abundances are crucial to identify the origin of Ba and Sr in UFDs. 
    more » « less
  3. ABSTRACT

    We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H]  = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.

     
    more » « less
  4. The Galactic center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), allow the measurement of metallicities in the inner region of our Galaxy. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool Asymptotic Giant branch (AGB) stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the red giant branch. We studied metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ∼ +0.3 dex and a metal-poor peak around {Fe/H] = −0.5 dex, which is 0.2 dex poorer than Baade’s Window. The α -elements Mg, Si, Ca, and O show a similar trend to the Galactic bulge. The metal-poor component is enhanced in the α -elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high-velocity stars with v gal  >  300 km s −1 ; the metal-rich stars show a much higher rotation velocity (∼200 km s −1 ) with respect to the metal-poor stars (∼140 km s −1 ). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disk and the nuclear star cluster show distinct chemical signatures and might be formed differently. 
    more » « less
  5. ABSTRACT

    Fluorine has many different potential sites and channels of production, making narrowing down a dominant site of fluorine production particularly challenging. In this work, we investigate which sources are the dominant contributors to the galactic fluorine by comparing chemical evolution models to observations of fluorine abundances in Milky Way stars covering a metallicity range of −2 < [Fe/H] < 0.4 and upper limits in the range of −3.4 < [Fe/H] < −2.3. In our models, we use a variety of stellar yield sets in order to explore the impact of varying both asymptotic giant branch (AGB) and massive star yields on the chemical evolution of fluorine. In particular, we investigate different prescriptions for initial rotational velocity in massive stars as well as a metallicity-dependent mix of rotational velocities. We find that the observed [F/O] and [F/Fe] abundance ratios at low metallicity and the increasing trend of [F/Ba] at [Fe/H] ≳ −1 can only be reproduced by chemical evolution models assuming, at all metallicities, a contribution from rapidly rotating massive stars with initial rotational velocities as high as 300 km s−1. A mix of rotational velocities may provide a more physical solution than the sole use of massive stars with vrot  =  300 km s−1, which are predicted to overestimate the fluorine and average s-process elemental abundances at [Fe/H] ≳ −1. The contribution from AGB stars is predicted to start at [Fe/H] ≈ −1 and becomes increasingly important at high metallicity, being strictly coupled to the evolution of the nitrogen abundance. Finally, by using modern yield sets, we investigate the fluorine abundances of Wolf–Rayet winds, ruling them out as dominant contributors to the galactic fluorine.

     
    more » « less