skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Cyber Defense Against Multi-Stage Attacks Using Learning-Based POMDP
Growing multi-stage attacks in computer networks impose significant security risks and necessitate the development of effective defense schemes that are able to autonomously respond to intrusions during vulnerability windows. However, the defender faces several real-world challenges, e.g., unknown likelihoods and unknown impacts of successful exploits. In this article, we leverage reinforcement learning to develop an innovative adaptive cyber defense to maximize the cost-effectiveness subject to the aforementioned challenges. In particular, we use Bayesian attack graphs to model the interactions between the attacker and networks. Then we formulate the defense problem of interest as a partially observable Markov decision process problem where the defender maintains belief states to estimate system states, leverages Thompson sampling to estimate transition probabilities, and utilizes reinforcement learning to choose optimal defense actions using measured utility values. The algorithm performance is verified via numerical simulations based on real-world attacks.  more » « less
Award ID(s):
1814679
PAR ID:
10296651
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Privacy and Security
Volume:
24
Issue:
1
ISSN:
2471-2566
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart grid attacks can be applied on a single component or multiple components. The corresponding defense strategies are totally different. In this paper, we investigate the solutions (e.g., linear programming and reinforcement learning) for one-shot game between the attacker and defender in smart power systems. We designed one-shot game with multi-line- switching attack and solved it using linear programming. We also designed the game with single-line-switching attack and solved it using reinforcement learning. The pay-off and utility/reward of the game is calculated based on the generation loss due to initiated attack by the attacker. Defender's defense action is considered while evaluating the pay-off from attacker's and defender's action. The linear programming based solution gives the probability of choosing best attack actions against different defense actions. The reinforcement learning based solution gives the optimal action to take under selected defense action. The proposed game is demonstrated on 6 bus system and IEEE 30 bus system and optimal solutions are analyzed. 
    more » « less
  2. Security of cyber-physical systems (CPS) continues to pose new challenges due to the tight integration and operational complexity of the cyber and physical components. To address these challenges, this article presents a domain-aware, optimization-based approach to determine an effective defense strategy for CPS in an automated fashion—by emulating a strategic adversary in the loop that exploits system vulnerabilities, interconnection of the CPS, and the dynamics of the physical components. Our approach builds on an adversarial decision-making model based on a Markov Decision Process (MDP) that determines the optimal cyber (discrete) and physical (continuous) attack actions over a CPS attack graph. The defense planning problem is modeled as a non-zero-sum game between the adversary and defender. We use a model-free reinforcement learning method to solve the adversary’s problem as a function of the defense strategy. We then employ Bayesian optimization (BO) to find an approximatebest-responsefor the defender to harden the network against the resulting adversary policy. This process is iterated multiple times to improve the strategy for both players. We demonstrate the effectiveness of our approach on a ransomware-inspired graph with a smart building system as the physical process. Numerical studies show that our method converges to a Nash equilibrium for various defender-specific costs of network hardening. 
    more » « less
  3. Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodology for real-world implementation. 
    more » « less
  4. null (Ed.)
    Moving target defense (MTD) is a proactive defense approach that aims to thwart attacks by continuously changing the attack surface of a system (e.g., changing host or network configurations), thereby increasing the adversary’s uncertainty and attack cost. To maximize the impact of MTD, a defender must strategically choose when and what changes to make, taking into account both the characteristics of its system as well as the adversary’s observed activities. Finding an optimal strategy for MTD presents a significant challenge, especially when facing a resourceful and determined adversary who may respond to the defender’s actions. In this paper, we propose a multi-agent partially-observable Markov Decision Process model of MTD and formulate a two-player general-sum game between the adversary and the defender. To solve this game, we propose a multi-agent reinforcement learning framework based on the double oracle algorithm. Finally, we provide experimental results to demonstrate the effectiveness of our framework in finding optimal policies. 
    more » « less
  5. Deep neural networks (DNNs) have been widely deployed in real-world, mission-critical applications, necessitating effective approaches to protect deep learning models against malicious attacks. Motivated by the high stealthiness and potential harm of backdoor attacks, a series of backdoor defense methods for DNNs have been proposed. However, most existing approaches require access to clean training data, hindering their practical use. Additionally, state-of-the-art (SOTA) solutions cannot simultaneously enhance model robustness and compactness in a data-free manner, which is crucial in resource-constrained applications. To address these challenges, in this paper, we propose Clean & Compact (C&C), an efficient data-free backdoor defense mechanism that can bring both purification and compactness to the original infected DNNs. Built upon the intriguing rank-level sensitivity to trigger patterns, C&C co-explores and achieves high model cleanliness and efficiency without the need for training data, making this solution very attractive in many real-world, resource-limited scenarios. Extensive evaluations across different settings consistently demonstrate that our proposed approach outperforms SOTA backdoor defense methods. 
    more » « less