As the leading mode of Pacific variability, El Niño–Southern Oscillation (ENSO) causes vast and widespread climatic impacts, including in the stratosphere. Following discovery of a stratospheric pathway of ENSO to the Northern Hemisphere surface, here we aim to investigate if there is a substantial Southern Hemisphere (SH) stratospheric pathway in relation to austral winter ENSO events. Large stratospheric anomalies connected to ENSO occur on average at high SH latitudes as early as August, peaking at around 10 hPa. An overall colder austral spring Antarctic stratosphere is generally associated with the warm phase of the ENSO cycle, and vice versa. This behavior is robust among reanalysis and six separate model ensembles encompassing two different model frameworks. A stratospheric pathway is identified by separating ENSO events that exhibit a stratospheric anomaly from those that do not and comparing to stratospheric extremes that occur during neutral ENSO years. The tropospheric eddy-driven jet response to the stratospheric ENSO pathway is the most robust in the spring following a La Niña, but extends into summer, and is more zonally symmetric compared to the tropospheric ENSO teleconnection. The magnitude of the stratospheric pathway is weaker compared to the tropospheric pathway and therefore, when it ismore »
- Award ID(s):
- 1734251
- Publication Date:
- NSF-PAR ID:
- 10296907
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 102
- Issue:
- 6
- Page Range or eLocation-ID:
- E1150 to E1171
- ISSN:
- 0003-0007
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The manuscript assesses the current and expected future global drivers of Southern Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the 1970s, has been a key driver, resulting in springtime cooling of the stratosphere and intensification of the polar vortex, increasing the frequency of positive phases of the Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector. SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low leading to either positive or negative sea ice anomalies in the west and east Pacific sectors, respectively. The strengthening of westerly winds is also linked to shoaling of deep warmer water onto the continental shelves, particularly in the East Pacific and Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with glacial and ice sheet melting in both sectors, opening up new ice free areas to biological productivity, but increasing seafloor disturbance by icebergs. The increased melting is correlated with a salinity decrease particularly in the surface 100 m. Such processes could increase the availability of iron, which is currently limiting primary production over much ofmore »
-
Abstract From 5 July to 11 September 2012, the Amundsen–Scott South Pole station experienced an unprecedented 78 days in a row with a maximum temperature at or below −50°C. Aircraft and ground-based activity cannot function without risk below this temperature. Lengthy periods of extreme cold temperatures are characterized by a drop in pressure of around 15 hPa over 4 days, accompanied by winds from grid east. Periodic influxes of warm air from the Weddell Sea raise the temperature as the wind shifts to grid north. The end of the event occurs when the temperature increase is enough to move past the −50°C threshold. This study also examines the length of extreme cold periods. The number of days below −50°C in early winter has been decreasing since 1999, and this trend is statistically significant at the 5% level. Late winter shows an increase in the number of days below −50°C for the same period, but this trend is not statistically significant. Changes in the southern annular mode, El Niño–Southern Oscillation, and the interdecadal Pacific oscillation/tripole index are investigated in relation to the initiation of extreme cold events. None of the correlations are statistically significant. A positive southern annular mode and amore »
-
Abstract Accurate prediction of global land monsoon rainfall on a sub-seasonal (2–8 weeks) time scale has become a worldwide demand. Current forecasts of weekly-mean rainfall in most monsoon regions, however, have limited skills beyond two weeks, calling for a more profound understanding of monsoon intraseasonal variability (ISV). We show that the high-frequency (HF; 8–20 days) ISV, crucial for the Week 2 and Week 3 predictions, accounts for about 53–70% of the total (8–70 days) ISV, generally dominating the sub-seasonal predictability of various land monsoons, while the low-frequency (LF; 20–70 days)’s contribution is comparable to HF only over Australia (AU; 47%), South Asia (SA; 43%), and South America (SAM; 40%). The leading modes of HFISVs in Northern Hemisphere (NH) monsoons primarily originate from different convectively coupled equatorial waves, while from mid-latitude wave trains for Southern Hemisphere (SH) monsoons and East Asian (EA) monsoon. The Madden-Julian Oscillation (MJO) directly regulates LFISVs in Asian-Australian monsoon and affects American and African monsoons by exciting Kelvin waves and mid-latitude teleconnections. During the past four decades, the HF (LF) ISVs have considerably intensified over Asian (Asian-Australian) monsoon but weakened over American (SAM) monsoon. Sub-seasonal to seasonal (S2S) prediction models exhibit higher sub-seasonal prediction skills over AU,more »
-
Abstract Early reanalyses are less than optimal for investigating the regional effects of ozone depletion on Southern Hemisphere (SH) high-latitude climate because the availability of satellite sounder data from 1979 significantly improved their accuracy in data sparse regions, leading to a coincident inhomogeneity. To determine whether current reanalyses are better at SH high-latitudes in the pre-satellite era, here we examine the capabilities of the European Centre for Medium-range Weather Forecasts (ECMWF) fifth generation reanalysis (ERA5), the Twentieth Century Reanalysis version 3 (20CRv3), and the Japanese Meteorological Agency (JMA) 55-year reanalysis (JRA-55) to reproduce and help explain the pronounced change in the relationship between the Southern Annular Mode (SAM) and Antarctic near-surface air temperatures (SAT) between 1950 and 1979 (EARLY period) and 1980–2020 (LATE period). We find that ERA5 best reproduces Antarctic SAT in the EARLY period and is also the most homogeneous reanalysis across the EARLY and LATE periods. ERA5 and 20CRv3 provide a good representation of SAM in both periods with JRA-55 only similarly skilful in the LATE period. Nevertheless, all three reanalyses show the marked change in Antarctic SAM-SAT relationships between the two periods. In particular, ERA5 and 20CRv3 demonstrate the observed switch in the sign of themore »