skip to main content


Title: Requirements-driven configuration of emergency response missions with small aerial vehicles
Unmanned Aerial Vehicles (UAVs) are increasingly used by emergency responders to support search-and-rescue operations, medical supplies delivery, fire surveillance, and many other scenarios. At the same time, researchers are investigating usage scenarios in which UAVs are imbued with a greater level of autonomy to provide automated search, surveillance, and delivery capabilities that far exceed current adoption practices. To address this emergent opportunity, we are developing a configurable, multi-user, multi-UAV system for supporting the use of semi-autonomous UAVs in diverse emergency response missions. We present a requirements-driven approach for creating a software product line (SPL) of highly configurable scenarios based on different missions. We focus on the process for eliciting and modeling a family of related use cases, constructing individual feature models, and activity diagrams for each scenario, and then merging them into an SPL. We show how the SPL will be implemented through leveraging and augmenting existing features in our DroneResponse system. We further present a configuration tool, and demonstrate its ability to generate mission-specific configurations for 20 different use case scenarios.  more » « less
Award ID(s):
1931962
NSF-PAR ID:
10297260
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Software Product Line Conference
Volume:
24
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The use of semi-autonomous Unmanned Aerial Vehicles (UAVs or drones) to support emergency response scenarios, such as fire surveillance and search-and-rescue, has the potential for huge societal benefits. Onboard sensors and artificial intelligence (AI) allow these UAVs to operate autonomously in the environment. However, human intelligence and domain expertise are crucial in planning and guiding UAVs to accomplish the mission. Therefore, humans and multiple UAVs need to collaborate as a team to conduct a time-critical mission successfully. We propose a meta-model to describe interactions among the human operators and the autonomous swarm of UAVs. The meta-model also provides a language to describe the roles of UAVs and humans and the autonomous decisions. We complement the meta-model with a template of requirements elicitation questions to derive models for specific missions. We also identify common scenarios where humans should collaborate with UAVs to augment the autonomy of the UAVs. We introduce the meta-model and the requirements elicitation process with examples drawn from a search-and-rescue mission in which multiple UAVs collaborate with humans to respond to the emergency. We then apply it to a second scenario in which UAVs support first responders in fighting a structural fire. Our results show that the meta-model and the template of questions support the modeling of the human-on-the-loop human interactions for these complex missions, suggesting that it is a useful tool for modeling the human-on-the-loop interactions for multi-UAVs missions. 
    more » « less
  2. The use of semi-autonomous Unmanned Aerial Vehicles (UAV) to support emergency response scenarios, such as fire surveillance and search and rescue, offers the potential for huge societal benefits. However, designing an effective solution in this complex domain represents a ``wicked design'' problem, requiring a careful balance between trade-offs associated with drone autonomy versus human control, mission functionality versus safety, and the diverse needs of different stakeholders. This paper focuses on designing for situational awareness (SA) using a scenario-driven, participatory design process. We developed SA cards describing six common design-problems, known as SA demons, and three new demons of importance to our domain. We then used these SA cards to equip domain experts with SA knowledge so that they could more fully engage in the design process. We designed a potentially reusable solution for achieving SA in multi-stakeholder, multi-UAV, emergency response applications. 
    more » « less
  3. We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate. 
    more » « less
  4. null (Ed.)
    Intelligent robot swarms are increasingly being explored as tools for search and rescue missions. Efficient path planning and robust communication networks are critical elements of completing missions. The focus of this research is to give unmanned aerial vehicles (UAVs) the ability to self-organize a mesh network that is optimized for area coverage. The UAVs will be able to read the communication strength between themselves and all the UAVs it is connected to using RSSI. The UAVs should be able to adjust their positioning closer to other UAVs if RSSI is below a threshold, and they should also maintain communication as a group if they move together along a search path. Our approach was to use Genetic Algorithms in a simulated environment to achieve multi-node exploration with emphasis on connectivity and swarm spread. 
    more » « less
  5. null (Ed.)
    There is an increasing need to fly unmanned aerial vehicles (UAVs) to enable a wide variety of beneficial applications such as emergency/disaster response, observation and study of weather phenomena including severe storms. However, UAVs are subject to cybersecurity threats stemming from increasing reliance on computer and communication technologies. There is a need to foster a robust workforce with integrated UAV and cybersecurity competencies. In addition to technique challenges, current UAV cybersecurity education also faces two significant non-technical challenges: first, there are federal or state rules and regulations on UAV flights; second, the number of designated UAV test sites is limited. A three years NSF SaTC funded project in 2020 will specifically address these challenges. We propose to develop a laboratory platform for UAV cybersecurity education. To be specific, our platform integrates software simulation with hardware-in-the-loop (HIL) simulation to simulate different UAV scenarios, on the top of which cybersecurity components are developed for hands-on practicing. We use a firmware for UAV system development, Pixhawk with related open-source software packages, as the basic simulation framework. On the top of the simulation environment, a series of hands-on exercise modules will be developed to cover UAV cybersecurity issues. Motivated by different types of cybersecurity threats to UAVs, we will adopt the scenario based design and set up several categories of exercise modules including common threats in UAV and additional modules for newly identified threats with corresponding actors, goals, actions, and events. In such a manner offense and defense tasks can be further developed. The proposed platform has the potential to be adopted by universities with limited resources to UAV cybersecurity. It will help educate future workforce with integrated UAV and cybersecurity competencies, towards secure and trustworthy cyberspace around UAVs. 
    more » « less