skip to main content


Title: The Next Generation of Human-Drone Partnerships: Co-Designing an Emergency Response System
The use of semi-autonomous Unmanned Aerial Vehicles (UAV) to support emergency response scenarios, such as fire surveillance and search and rescue, offers the potential for huge societal benefits. However, designing an effective solution in this complex domain represents a ``wicked design'' problem, requiring a careful balance between trade-offs associated with drone autonomy versus human control, mission functionality versus safety, and the diverse needs of different stakeholders. This paper focuses on designing for situational awareness (SA) using a scenario-driven, participatory design process. We developed SA cards describing six common design-problems, known as SA demons, and three new demons of importance to our domain. We then used these SA cards to equip domain experts with SA knowledge so that they could more fully engage in the design process. We designed a potentially reusable solution for achieving SA in multi-stakeholder, multi-UAV, emergency response applications.  more » « less
Award ID(s):
1931962
NSF-PAR ID:
10188685
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
CHI Conference on Human Factors in Computing Systems
Volume:
2020
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lankes, R. David (Ed.)
    Resilience is often treated as a single-dimension system attribute, or various dimensions of resilience are studied separately without considering multi-dimensionality. The increasing frequency of catastrophic natural or man-made disasters affecting rural areas demands holistic assessments of community vulnerability and assessment. Disproportionate effects of disasters on minorities, low-income, hard-to-reach, and vulnerable populations demand a community-oriented planning approach to address the “resilience divide.” Rural areas have many advantages, but low population density, coupled with dispersed infrastructures and community support networks, make these areas more affected by natural disasters. This paper will catalyze three key learnings from our current work in public librarians’ roles in disaster resiliency: rural communities are composed of diverse sub-communities, each which experiences and responds to traumatic events differently, depending on micro-geographic and demographic drivers. Rural citizens tend to be very self-reliant and are committed to strengthening and sustaining community resiliency with local human capital and resources. Public libraries are central to rural life, providing a range of informational, educational, social, and personal services, especially in remote areas that lack reliable access to community resources during disasters. Public libraries and their librarian leaders are often a “crown jewel” of rural areas’ community infrastructure and this paper will present a community-based design and assessment process for resiliency hubs located in and operated through rural public libraries. The core technical and social science research questions explored in the proposed paper are: 1) Who were the key beneficiaries and what did they need? 2) What was the process of designing a resiliency hub? 3) What did library resiliency hubs provide and how can they be sustained? This resiliency hub study will detail co-production of solutions and involves an inclusive collaboration among researchers, librarians, and community members to address the effects of cascading impacts of natural disasters. The novel co-design process detailed in the paper reflects an in-depth understanding of the complex interactions among libraries, residents, governments, and other agencies by collecting sociotechnical hurricane-related data for Calhoun County, Florida, USA, a region devastated by Hurricane Michael (2018) and hard-hit by Covid-19. We analyzed data from newly developed fusing algorithms and incorporating multiple communities and developed a framework and process to co-design resiliency hubs sited in public libraries. This research leverages a unique opportunity to library-centered policies and technologies to establish a new paradigm for developing disaster resiliency in rural settings. Public libraries serve a diverse population who will directly benefit from practical support tailored to their needs. The project will inform efficient plans to ensure that high-need groups are not isolated in disasters. The knowledge and insight gained from the resiliency hub design process will not only improve our understanding of emergency response operations, but also will contribute to the development of new disaster related policies and plans for public libraries, with a broader application to rural communities in many settings. 
    more » « less
  2. null (Ed.)
    Unmanned Aerial Vehicles (UAVs) are increasingly used by emergency responders to support search-and-rescue operations, medical supplies delivery, fire surveillance, and many other scenarios. At the same time, researchers are investigating usage scenarios in which UAVs are imbued with a greater level of autonomy to provide automated search, surveillance, and delivery capabilities that far exceed current adoption practices. To address this emergent opportunity, we are developing a configurable, multi-user, multi-UAV system for supporting the use of semi-autonomous UAVs in diverse emergency response missions. We present a requirements-driven approach for creating a software product line (SPL) of highly configurable scenarios based on different missions. We focus on the process for eliciting and modeling a family of related use cases, constructing individual feature models, and activity diagrams for each scenario, and then merging them into an SPL. We show how the SPL will be implemented through leveraging and augmenting existing features in our DroneResponse system. We further present a configuration tool, and demonstrate its ability to generate mission-specific configurations for 20 different use case scenarios. 
    more » « less
  3. Grewe, Lynne L. ; Blasch, Erik P. ; Kadar, Ivan (Ed.)
    Sensor fusion combines data from a suite of sensors into an integrated solution that represents the target environment more accurately than that produced by individual sensors. New developments in Machine Learning (ML) algorithms are leading to increased accuracy, precision, and reliability in sensor fusion performance. However, these increases are accompanied by increases in system costs. Aircraft sensor systems have limited computing, storage, and bandwidth resources, which must balance monetary, computational, and throughput costs, sensor fusion performance, aircraft safety, data security, robustness, and modularity system objectives while meeting strict timing requirements. Performing trade studies of these system objectives should come before incorporating new ML models into the sensor fusion software. A scalable and automated solution is needed to quickly analyze the effects on the system’s objectives of providing additional resources to the new inference models. Given that model-based systems engineering (MBSE) is a focus of the majority of the aerospace industry for designing aircraft mission systems, it follows that leveraging these system models can provide scalability to the system analyses needed. This paper proposes adding empirically derived sensor fusion RNN performance and cost measurement data to machine-readable Model Cards. Furthermore, this paper proposes a scalable and automated sensor fusion system analysis process for ingesting SysML system model information and RNN Model Cards for system analyses. The value of this process is the integration of data analysis and system design that enables rapid enhancements of sensor system development. 
    more » « less
  4. Lankes, R.David (Ed.)
    Resilience is often treated as a single-dimension system attribute, or various dimensions of resilience are studied separately without considering multi-dimensionality. The increasing frequency of catastrophic natural or man-made disasters affecting rural areas demands holistic assessments of community vulnerability and assessment. Disproportionate effects of disasters on minorities, low-income, hard-to-reach, and vulnerable populations demand a community-oriented planning approach to address the “resilience divide.” Rural areas have many advantages, but low population density, coupled with dispersed infrastructures and community support networks, make these areas more affected by natural disasters. This paper will catalyze three key learnings from our current work in public librarians’ roles in disaster resiliency: 1) rural communities are composed of diverse sub-communities, each which experiences and responds to traumatic events differently, depending on micro-geographic and demographic drivers; 2) public libraries are central to rural life, providing a range of informational, educational, social, and personal services, especially in remote areas that lack reliable access to community resources during disasters; and 3) rural citizens tend to be very self-reliant and are committed to strengthening and sustaining community resiliency with local human capital and resources. Public libraries and their librarian leaders are often a “crown jewel” of rural areas’ community infrastructure and this paper will present a community-based design and assessment process for resiliency hubs located in and operated through rural public libraries. The core technical and social science research questions explored in the proposed paper are: 1) Who were the key beneficiaries and what did they need? 2) What was the process of designing a resiliency hub? 3) What did library resiliency hubs provide and how can they be sustained? This resiliency hub study will detail co-production of solutions and involves an inclusive collaboration among researchers, librarians, and community members to address the effects of cascading impacts of natural disasters. The novel co-design process detailed in the paper reflects 1) an in-depth understanding of the complex interactions among libraries, residents, governments, and other agencies by collecting sociotechnical hurricane-related data for Calhoun County, Florida, USA, a region devastated by Hurricane Michael (2018) and hard-hit by Covid-19; 2) analyzed data from newly-developed fusing algorithms and incorporating multiple communities; and 3) co-designed resiliency hubs sited in public libraries. This research leverages a unique opportunity for the co-development of integrated library-centered policies and technologies to establish a new paradigm for developing disaster resiliency in rural settings. Public libraries serve a diverse population who will directly benefit from practical support tailored to their needs. The project will inform efficient plans to ensure that high-need groups are not isolated in disasters. The knowledge and insight gained from disseminating the study’s results will not only improve our understanding of emergency response operations, but also will contribute to the development of new disaster-related policies and plans for public libraries, with a broader application to rural communities in many settings. 
    more » « less
  5. Abstract

    Multifunctional nanozymes can benefit biochemical analysis via expanding sensing modes and enhancing analytical performance, but designing multifunctional nanozymes to realize the desired sensing of targets is challenging. In this work, single‐atomic iron doped carbon dots (SA Fe‐CDs) are designed and synthesized via a facile in situ pyrolysis process. The small‐sized CDs not only maintain their tunable fluorescence, but also serve as a support for loading dispersed active sites. Monoatomic Fe offers SA Fe‐CDs exceptional oxidase‐mimetic activity to catalyze 3,3′,5,5′‐tetramethylbenzidine (TMB) oxidation with fast response (Vmax = 10.4 nM s‐1) and strong affinity (Km = 168 µM). Meanwhile, their photoluminescence is quenched by the oxidation product of TMB due to inner filter effect. Phosphate ions (Pi) can suppress the oxidase‐mimicking activity and restore the photoluminescence of SA Fe‐CDs by interacting with Fe active sites. Based on this principle, a dual‐mode colorimetric and fluorescence assay of Pi with high sensitivity, selectivity, and rapid response is established. This work paves a path to develop multifunctional enzyme‐like catalysts, and offers a simple but efficient dual‐mode method for phosphate monitoring, which will inspire the exploration of multi‐mode sensing strategies based on nanozyme catalysis.

     
    more » « less