skip to main content


Search for: All records

Award ID contains: 1931962

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When dealing with safety-critical systems, various regulations, standards, and guidelines stipulate stringent requirements for certification and traceability of artifacts, but typically lack \rev{details} with regards to the corresponding software engineering process. Given the industrial practice of only using semi-formal notations for describing engineering processes with the lack of proper tool mapping engineers and developers need to invest a significant amount of time and effort to ensure that all steps mandated by quality assurance are followed. The sheer size and complexity of systems and regulations make manual, timely feedback from Quality Assurance (QA) engineers infeasible. In order to address these issues, in this paper, we propose a novel framework for tracking, and ``passively'' executing processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to three case studies: a safety-critical open-source community system, a safety-critical system in the air-traffic control domain, and a non-safety-critical, web-based system. Results from our analysis confirm that trace links are often corrected or completed after the work step has been considered finished, and the engineer has already moved on to another step. Thus, support for timely and automated constraint checking has significant potential to reduce rework as the engineer receives continuous feedback already during their work step. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. When dealing with safety–critical systems, various regulations, standards, and guidelines stipulate stringent requirements for certification and traceability of artifacts, but typically lack details with regards to the corresponding software engineering process. Given the industrial practice of only using semi-formal notations for describing engineering processes – with the lack of proper tool mapping – engineers and developers need to invest a significant amount of time and effort to ensure that all steps mandated by quality assurance are followed. The sheer size and complexity of systems and regulations make manual, timely feedback from Quality Assurance (QA) engineers infeasible. In order to address these issues, in this paper, we propose a novel framework for tracking, and “passively” executing processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to three case studies: a safety–critical open-source community system, a safety–critical system in the air-traffic control domain, and a non-safety–critical, web-based system. Results from our analysis confirm that trace links are often corrected or completed after the work step has been considered finished, and the engineer has already moved on to another step. Thus, support for timely and automated constraint checking has significant potential to reduce rework as the engineer receives continuous feedback already during their work step. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Computer Vision (CV) is used in a broad range of Cyber-Physical Systems such as surgical and factory floor robots and autonomous vehicles including small Unmanned Aerial Systems (sUAS). It enables machines to perceive the world by detecting and classifying objects of interest, reconstructing 3D scenes, estimating motion, and maneuvering around objects. CV algorithms are developed using diverse machine learning and deep learning frameworks, which are often deployed on limited resource edge devices. As sUAS rely upon an accurate and timely perception of their environment to perform critical tasks, problems related to CV can create hazardous conditions leading to crashes or mission failure. In this paper, we perform a systematic literature review (SLR) of CV-related challenges associated with CV, hardware, and software engineering. We then group the reported challenges into five categories and fourteen sub-challenges and present existing solutions. As current literature focuses primarily on CV and hardware challenges, we close by discussing implications for Software Engineering, drawing examples from a CV-enhanced multi-sUAS system. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. In emergency response scenarios, autonomous small Unmanned Aerial Systems (sUAS) must be configured and deployed quickly and safely to perform mission-specific tasks. In this paper, we present \DR, a Software Product Line for rapidly configuring and deploying a multi-role, multi-sUAS mission whilst guaranteeing a set of safety properties related to the sequencing of tasks within the mission. Individual sUAS behavior is governed by an onboard state machine, combined with coordination handlers which are configured dynamically within seconds of launch and ultimately determine the sUAS' behaviors, transition decisions, and interactions with other sUAS, as well as human operators. The just-in-time manner in which missions are configured precludes robust upfront testing of all conceivable combinations of features -- both within individual sUAS and across cohorts of collaborating ones. To ensure the absence of common types of configuration failures and to promote safe deployments, we check vital properties of the dynamically generated sUAS specifications and coordination handlers before sUAS are assigned their missions. We evaluate our approach in two ways. First, we perform validation tests to show that the end-to-end configuration process results in correctly executed missions, and second, we apply fault-based mutation testing to show that our safety checks successfully detect incorrect task sequences. 
    more » « less
  5. Missing person searches are typically initiated with a description of a person that includes their age, race, clothing, and gender, possibly supported by a photo. Unmanned Aerial Systems (sUAS) imbued with Computer Vision (CV) capabilities, can be deployed to quickly search an area to find the missing person; however, the search task is far more difficult when a crowd of people is present, and only the person described in the missing person report must be identified. It is particularly challenging to perform this task on the potentially limited resources of an sUAS. We therefore propose AirSight, as a new model that hierarchically combines multiple CV models, exploits both onboard and off-board computing capabilities, and engages humans interactively in the search. For illustrative purposes, we use AirSight to show how a person's image, extracted from an aerial video can be matched to a basic description of the person. Finally, as a work-in-progress paper, we describe ongoing efforts in building an aerial dataset of partially occluded people and physically deploying AirSight on our sUAS. 
    more » « less
  6. Schmerl, Bradley R. ; Maggio, Martina ; Camara, Javier (Ed.)
    The MAPE-K feedback loop has been established as the primary reference model for self-adaptive and autonomous systems in domains such as autonomous driving, robotics, and Cyber-Physical Systems. At the same time, the Human Machine Teaming (HMT) paradigm is designed to promote partnerships between humans and autonomous machines. It goes far beyond the degree of collaboration expected in human-on-the-loop and human-in-the-loop systems and emphasizes interactions, partnership, and teamwork between humans and machines. However, while MAPE-K enables fully autonomous behavior, it does not explicitly address the interactions between humans and machines as intended by HMT. In this paper, we present the MAPE-K-HMT framework which augments the traditional MAPE-K loop with support for HMT. We identify critical human-machine teaming factors and describe the infrastructure needed across the various phases of the MAPE-K loop in order to effectively support HMT. This includes runtime models that are constructed and populated dynamically across monitoring, analysis, planning, and execution phases to support human-machine partnerships. We illustrate MAPE-KHMT using examples from an autonomous multi-UAV emergency response system, and present guidelines for integrating HMT into MAPE-K. 
    more » « less
  7. Rapid advancements in Artificial Intelligence have shifted the focus from traditional human-directed robots to fully autonomous ones that do not require explicit human control. These are commonly referred to as Human-on-the-Loop (HotL) systems. Transparency of HotL systems necessitates clear explanations of autonomous behavior so that humans are aware of what is happening in the environment and can understand why robots behave in a certain way. However, in complex multi-robot environments, especially those in which the robots are autonomous and mobile, humans may struggle to maintain situational awareness. Presenting humans with rich explanations of autonomous behavior tends to overload them with lots of information and negatively affect their understanding of the situation. Therefore, explaining the autonomous behavior of multiple robots creates a design tension that demands careful investigation. This paper examines the User Interface (UI) design trade-offs associated with providing timely and detailed explanations of autonomous behavior for swarms of small Unmanned Aerial Systems (sUAS) or drones. We analyze the impact of UI design choices on human awareness of the situation. We conducted multiple user studies with both inexperienced and expert sUAS operators to present our design solution and initial guidelines for designing the HotL multi-sUAS interface. 
    more » « less
  8. null (Ed.)
    With the rise of new AI technologies, autonomous systems are moving towards a paradigm in which increasing levels of responsibility are shifted from the human to the system, creating a transition from human-in-the-loop systems to human-on-the-loop (HoTL) systems. This has a significant impact on the safety analysis of such systems, as new types of errors occurring at the boundaries of human-machine interactions need to be taken into consideration. Traditional safety analysis typically focuses on system-level hazards with little focus on user-related or user-induced hazards that can cause critical system failures. To address this issue, we construct domain-level safety analysis assets for sUAS (small unmanned aerial systems) applications and describe the process we followed to explicitly, and systematically identify Human Interaction Points (HiPs), Hazard Factors and Mitigations from system hazards. We evaluate our approach by first investigating the extent to which recent sUAS incidents are covered by our hazard trees, and second by performing a study with six domain experts using our hazard trees to identify and document hazards for sUAS usage scenarios. Our study showed that our hazard trees provided effective coverage for a wide variety of sUAS application scenarios and were useful for stimulating safety thinking and helping users to identify and potentially mitigate human-interaction hazards. 
    more » « less
  9. null (Ed.)
    Runtime monitoring is essential for ensuring the safe operation and enabling self-adaptive behavior of Cyber-Physical Systems (CPS). It requires the creation of system monitors, instrumentation for data collection, and the definition of constraints. All of these aspects need to evolve to accommodate changes in the system. However, most existing approaches lack support for the automated generation and setup of monitors and constraints for diverse technologies and do not provide adequate support for evolving the monitoring infrastructure. Without this support, constraints and monitors can become stale and become less effective in long-running, rapidly changing CPS. In this ``new and emerging results'' paper we propose a novel framework for model-integrated runtime monitoring. We combine model-driven techniques and runtime monitoring to automatically generate large parts of the monitoring framework and to reduce the maintenance effort necessary when parts of the monitored system change. We build a prototype and evaluate our approach against a system for controlling the flights of unmanned aerial vehicles. 
    more » « less
  10. null (Ed.)
    Computer vision approaches are widely used by autonomous robotic systems to sense the world around them and to guide their decision making as they perform diverse tasks such as collision avoidance, search and rescue, and object manipulation. High accuracy is critical, particularly for Human-on-the-loop (HoTL) systems where decisions are made autonomously by the system, and humans play only a supervisory role. Failures of the vision model can lead to erroneous decisions with potentially life or death consequences. In this paper, we propose a solution based upon adaptive autonomy levels, whereby the system detects loss of reliability of these models and responds by temporarily lowering its own autonomy levels and increasing engagement of the human in the decision-making process. Our solution is applicable for vision-based tasks in which humans have time to react and provide guidance. When implemented, our approach would estimate the reliability of the vision task by considering uncertainty in its model, and by performing covariate analysis to determine when the current operating environment is ill-matched to the model's training data. We provide examples from DroneResponse, in which small Unmanned Aerial Systems are deployed for Emergency Response missions, and show how the vision model's reliability would be used in addition to confidence scores to drive and specify the behavior and adaptation of the system's autonomy. This workshop paper outlines our proposed approach and describes open challenges at the intersection of Computer Vision and Software Engineering for the safe and reliable deployment of vision models in the decision making of autonomous systems. 
    more » « less