skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing chemically selective liquid crystalline materials that respond to oxidizing gases
Computational methods can provide first-principles insights into the thermochemistry and kinetics of reactions at interfaces, but this capability has not been widely leveraged to design soft materials that respond selectively to chemical species. Here we address this opportunity by demonstrating the design of micrometer-thick liquid crystalline films supported on metal-perchlorate surfaces that exhibit selective orientational responses to targeted oxidizing gases. Initial electronic structure calculations predicted Mn 2+ , Co 2+ , and Ni 2+ to be promising candidate surface binding sites that (1) coordinate with nitrile-containing mesogens to orient liquid crystal (LC) phases and (2) undergo redox-triggered reactions upon exposure to humid O 3 leading to a change in the strength of binding of the nitrile group to the surface. These initial predictions were validated by experimental observations of orientational transitions of nitrile-containing LCs upon exposure to air containing parts-per-billion concentrations of O 3 . Additional first-principles calculations of reaction free energies of metal salts and oxidizing gases predicted that the same set of metal cations, if patterned on surfaces at distinct spatial locations, would provide LC responses that allow Cl 2 and O 3 to be distinguished while not responding to environmental oxidants such as O 2 and NO 2 . Experimental results are provided to support this prediction, and X-ray diffraction measurements confirmed that the experimentally observed LC responses can be understood in terms of the relative thermodynamic driving force for formation of MnO 2 , CoOOH, or NiOOH from the corresponding metal cation binding sites in the presence of humid O 3 and Cl 2 .  more » « less
Award ID(s):
1921722 1921696 1719875 1921668
PAR ID:
10297264
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
9
Issue:
20
ISSN:
2050-7526
Page Range / eLocation ID:
6507 to 6517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Surface‐supported liquid crystals (LCs) that exhibit orientational and thus optical responses upon exposure to ppb concentrations of Cl2gas are reported. Computations identified Mn cations as candidate surface binding sites that undergo redox‐triggered changes in the strength of binding to nitrogen‐based LCs upon exposure to Cl2gas. Guided by these predictions, μm‐thick films of nitrile‐ or pyridine‐containing LCs were prepared on surfaces decorated with Mn2+binding sites as perchlorate salts. Following exposure to Cl2, formation of Mn4+(in the form of MnO2microparticles) was confirmed and an accompanying change in the orientation and optical appearance of the supported LC films was measured. In unoptimized systems, the LC orientational transitions provided the sensitivity and response times needed for monitoring human exposure to Cl2gas. The response was also selective to Cl2over other oxidizing agents such as air or NO2and other chemical targets such as organophosphonates. 
    more » « less
  2. null (Ed.)
    The development of responsive soft materials with tailored functional properties based on the chemical reactivity of atomically precise inorganic interfaces has not been widely explored. In this communication, guided by first-principles calculations, we design bimetallic surfaces comprised of atomically thin Pd layers deposited onto Au that anchor nematic liquid crystalline phases of 4′- n -pentyl-4-biphenylcarbonitrile (5CB) and demonstrate that the chemical reactivity of these bimetallic surfaces towards Cl 2 gas can be tuned by specification of the composition of the surface alloy. Specifically, we use underpotential deposition to prepare submonolayer to multilayers of Pd on Au and employ X-ray photoelectron and infrared spectroscopy to validate computational predictions that binding of 5CB depends strongly on the Pd coverage, with ∼0.1 monolayer (ML) of Pd sufficient to cause the liquid crystal (LC) to adopt a perpendicular binding mode. Computed heats of dissociative adsorption of Cl 2 on PdAu alloy surfaces predict displacement of 5CB from these surfaces, a result that is also confirmed by experiments revealing that 1 ppm Cl 2 triggers orientational transitions of 5CB. By decreasing the coverage of Pd on Au from 1.8 ± 0.2 ML to 0.09 ± 0.02 ML, the dynamic response of 5CB to 1 ppm Cl 2 is accelerated 3X. Overall, these results demonstrate the promise of hybrid designs of responsive materials based on atomically precise interfaces formed between hard bimetallic surfaces and soft matter. 
    more » « less
  3. Abstract Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments. 
    more » « less
  4. Abstract Microtubules and catalytic motor proteins underlie the microscale actuation of living materials, and they have been used in reconstituted systems to harness chemical energy to drive new states of organization of soft matter (e.g., liquid crystals (LCs)). Such materials, however, are fragile and challenging to translate to technological contexts. Rapid (sub‐second) and reversible changes in the orientations of LCs at room temperature using reactions between gaseous hydrogen and oxygen that are catalyzed by Pd/Au surfaces are reported. Surface chemical analysis and computational chemistry studies confirm that dissociative adsorption of H2on the Pd/Au films reduces preadsorbed O and generates 1 ML of adsorbed H, driving nitrile‐containing LCs from a perpendicular to a planar orientation. Subsequent exposure to O2leads to oxidation of the adsorbed H, reformation of adsorbed O on the Pd/Au surface, and a return of the LC to its initial orientation. The roles of surface composition and reaction kinetics in determining the LC dynamics are described along with a proof‐of‐concept demonstration of microactuation of beads. These results provide fresh ideas for utilizing chemical energy and catalysis to reversibly actuate functional LCs on the microscale. 
    more » « less
  5. We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these LC films. Guided by computational chemistry predictions, we find that nitrate anions weaken the binding of 4′- n -pentyl-4-biphenylcarbonitrile (5CB) to transition metal cations, as compared to perchlorate salts, although binding is still sufficiently strong to induce homeotropic (perpendicular) orientations of 5CB. In addition, we find the orientations of the LC to be correlated across all metal cations investigated by a molecular anchoring energy density that is calculated as the product of the single-site binding energy and metal cation binding site density on the surface. The weaker single-site binding energy caused by nitrate also facilitates competitive binding of adsorbates to the metal cations, leading to more facile orientational transitions induced by adsorbates. Finally, our analysis suggests that nitrate anions recruit water via hydrogen bonding to the metal binding sites, modulating further the relative net binding energies of 5CB and adsorbates to surfaces decorated with metal nitrates. After accounting for the presence of water, we find a universal exponential relationship between the calculated displacement free energies and measured dynamic response of LCs to adsorbates for all metal salts studied, independent of the metal salt anion. 
    more » « less