Host-based Intrusion Detection Systems (HIDS) automatically detect events that indicate compromise by adversarial applications. HIDS are generally formulated as analyses of sequences of system events such as bash commands or system calls. Anomaly-based approaches to HIDS leverage models of normal (a.k.a. baseline) system behavior to detect and report abnormal events and have the advantage of being able to detect novel attacks. In this article, we develop a new method for anomaly-based HIDS using deep learning predictions of sequence-to-sequence behavior in system calls. Our proposed method, called the ALAD algorithm, aggregates predictions at the application level to detect anomalies. We investigate the use of several deep learning architectures, including WaveNet and several recurrent networks. We show that ALAD empowered with deep learning significantly outperforms previous approaches. We train and evaluate our models using an existing dataset, ADFA-LD, and a new dataset of our own construction, PLAID. As deep learning models are black box in nature, we use an alternate approach, allotaxonographs, to characterize and understand differences in baseline vs. attack sequences in HIDS datasets such as PLAID.
more »
« less
A Machine Learning Approach for Anomaly Detection in Industrial Control Systems Based on Measurement Data
Attack detection problems in industrial control systems (ICSs) are commonly known as a network traffic monitoring scheme for detecting abnormal activities. However, a network-based intrusion detection system can be deceived by attackers that imitate the system’s normal activity. In this work, we proposed a novel solution to this problem based on measurement data in the supervisory control and data acquisition (SCADA) system. The proposed approach is called measurement intrusion detection system (MIDS), which enables the system to detect any abnormal activity in the system even if the attacker tries to conceal it in the system’s control layer. A supervised machine learning model is generated to classify normal and abnormal activities in an ICS to evaluate the MIDS performance. A hardware-in-the-loop (HIL) testbed is developed to simulate the power generation units and exploit the attack dataset. In the proposed approach, we applied several machine learning models on the dataset, which show remarkable performances in detecting the dataset’s anomalies, especially stealthy attacks. The results show that the random forest is performing better than other classifier algorithms in detecting anomalies based on measured data in the testbed.
more »
« less
- Award ID(s):
- 1919855
- PAR ID:
- 10297284
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2079-9292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain’s distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.more » « less
-
Analyzing network traffic activities is imperative in network security to detect attack patterns. Due to the complex nature of network traffic event activities caused by continuously changing computing environments and software applications, identifying the patterns is one of the challenging research topics. This study focuses on analyzing the effectiveness of integrating Multi-Resolution Analysis (MRA) and visualization in identifying the attack patterns of network traffic activities. In detail, a Discrete Wavelet Transform (DWT) is utilized to extract features from network traffic data and investigate their capability of identifying attacks. For extracting features, various sliding windows and step sizes are tested. Then, visualizations are generated to help users conduct interactive visual analyses to identify abnormal network traffic events. To determine optimal solutions for generating visualizations, an extensive evaluation with multiple intrusion detection datasets has been performed. In addition, classification analysis with three different classification algorithms is managed to understand the effectiveness of using the MRA with visualization. From the study, we generated multiple visualizations associated with various window and step sizes to emphasize the effectiveness of the proposed approach in differentiating normal and attack events by forming distinctive clusters. We also found that utilizing MRA with visualization advances network intrusion detection by generating clearly separated visual clusters.more » « less
-
null (Ed.)Network intrusion detection systems (IDS) has efficiently identified the profiles of normal network activities, extracted intrusion patterns, and constructed generalized models to evaluate (un)known attacks using a wide range of machine learning approaches. In spite of the effectiveness of machine learning-based IDS, it has been still challenging to reduce high false alarms due to data misclassification. In this paper, by using multiple decision mechanisms, we propose a new classification method to identify misclassified data and then to classify them into three different classes, called a malicious, benign, and ambiguous dataset. In other words, the ambiguous dataset contains a majority of the misclassified dataset and is thus the most informative for improving the model and anomaly detection because of the lack of confidence for the data classification in the model. We evaluate our approach with the recent real-world network traffic data, Kyoto2006+ datasets, and show that the ambiguous dataset contains 77.2% of the previously misclassified data. Re-evaluating the ambiguous dataset effectively reduces the false prediction rate with minimal overhead and improves accuracy by 15%.more » « less
-
Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics’ exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency.more » « less
An official website of the United States government

