skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Time Resolution Ensemble LSTMs for Enhanced Feature Extraction in High-Rate Time Series
Systems experiencing high-rate dynamic events, termed high-rate systems, typically undergo accelerations of amplitudes higher than 100 g-force in less than 10 ms. Examples include adaptive airbag deployment systems, hypersonic vehicles, and active blast mitigation systems. Given their critical functions, accurate and fast modeling tools are necessary for ensuring the target performance. However, the unique characteristics of these systems, which consist of (1) large uncertainties in the external loads, (2) high levels of non-stationarities and heavy disturbances, and (3) unmodeled dynamics generated from changes in system configurations, in combination with the fast-changing environments, limit the applicability of physical modeling tools. In this paper, a deep learning algorithm is used to model high-rate systems and predict their response measurements. It consists of an ensemble of short-sequence long short-term memory (LSTM) cells which are concurrently trained. To empower multi-step ahead predictions, a multi-rate sampler is designed to individually select the input space of each LSTM cell based on local dynamics extracted using the embedding theorem. The proposed algorithm is validated on experimental data obtained from a high-rate system. Results showed that the use of the multi-rate sampler yields better feature extraction from non-stationary time series compared with a more heuristic method, resulting in significant improvement in step ahead prediction accuracy and horizon. The lean and efficient architecture of the algorithm results in an average computing time of 25 μμs, which is below the maximum prediction horizon, therefore demonstrating the algorithm’s promise in real-time high-rate applications.  more » « less
Award ID(s):
1937460
PAR ID:
10297330
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
6
ISSN:
1424-8220
Page Range / eLocation ID:
1954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract: Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and classic Markovian models such as Bayesian Knowledge Tracing (BKT) have been successfully applied for student modeling. However, much of this prior work is designed to handle sequences of events with discrete timesteps, rather than considering the continuous aspect of time. Given that time elapsed between successive elements in a student’s trajectory can vary from seconds to days, we applied a Timeaware LSTM (T-LSTM) to model the dynamics of student knowledge state in continuous time. We investigate the effectiveness of T-LSTM on two domains with very different characteristics. One involves an open-ended programming environment where students can self-pace their progress and T-LSTM is compared against LSTM, Recent Temporal Pattern Mining, and the classic Logistic Regression (LR) on the early prediction of student success; the other involves a classic tutor-driven intelligent tutoring system where the tutor scaffolds the student learning step by step and T-LSTM is compared with LSTM, LR, and BKT on the early prediction of student learning gains. Our results show that TLSTM significantly outperforms the other methods on the self-paced, open-ended programming environment; while on the tutor-driven ITS, it ties with LSTM and outperforms both LR and BKT. In other words, while time-irregularity exists in both datasets, T-LSTM works significantly better than other student models when the pace is driven by students. On the other hand, when such irregularity results from the tutor, T-LSTM was not superior to other models but its performance was not hurt either. 
    more » « less
  2. Wireless x-haul networks rely on microwave and millimeter-wave links between 4G and/or 5G base-stations to support ultra-high data rate and ultra-low latency. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoderdecoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the base-stations sharing the network and preventing transient congestion that may be caused by re-routing. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances 
    more » « less
  3. Lee, Jonghyun; Darve, Eric F.; Kitanidis, Peter K.; Mahoney, Michael W.; Karpatne, Anuj; Farthing, Matthew W.; Hesser, Tyler (Ed.)
    Modern design, control, and optimization often require multiple expensive simulations of highly nonlinear stiff models. These costs can be amortized by training a cheap surrogate of the full model, which can then be used repeatedly. Here we present a general data-driven method, the continuous time echo state network (CTESN), for generating surrogates of nonlinear ordinary differential equations with dynamics at widely separated timescales. We empirically demonstrate the ability to accelerate a physically motivated scalable model of a heating system by 98x while maintaining relative error of within 0.2 %. We showcase the ability for this surrogate to accurately handle highly stiff systems which have been shown to cause training failures with common surrogate methods such as Physics-Informed Neural Networks (PINNs), Long Short Term Memory (LSTM) networks, and discrete echo state networks (ESN). We show that our model captures fast transients as well as slow dynamics, while demonstrating that fixed time step machine learning techniques are unable to adequately capture the multi-rate behavior. Together this provides compelling evidence for the ability of CTESN surrogates to predict and accelerate highly stiff dynamical systems which are unable to be directly handled by previous scientific machine learning techniques. 
    more » « less
  4. 4G, 5G, and smart city networks often rely on microwave and millimeter-wave x-haul links. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the nodes using the network (e.g., base-stations) and preventing transient congestion that may be caused by switching routes. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances. 
    more » « less
  5. Abstract In this paper, a method for real-time forecasting of the dynamics of structures experiencing nonstationary inputs is described. This is presented as time series predictions across different timescales. The target applications include hypersonic vehicles, space launch systems, real-time prognostics, and monitoring of high-rate and energetic systems. This work presents numerical analysis and experimental results for the real-time implementation of a Fast Fourier Transform (FFT)-based approach for time series forecasting. For this preliminary study, a testbench structure that consists of a cantilever beam subjected to nonstationary inputs is used to generate experimental data. First, the data is de-trended, then the time series data is transferred into the frequency domain, and measures for frequency, amplitude, and phase are obtained. Thereafter, select frequency components are collected, transformed back to the time domain, recombined, and then the trend in the data is restored. Finally, the recombined signals are propagated into the future to the selected prediction horizon. This preliminary time series forecasting work is done offline using pre-recorded experimental data, and the FFT-based approach is implemented in a rolling window configuration. Here learning windows of 0.1, 0.5, and 1 s are considered with different computation times simulated. Results demonstrate that the proposed FFT-based approach can maintain a constant prediction horizon at 1 s with sufficient accuracy for the considered system. The performance of the system is quantified using a variety of metrics. Computational speed and prediction accuracy as a function of training time and learning window lengths are examined in this work. The algorithm configuration with the shortest learning window (0.1 s) is shown to converge faster following the nonstationary when compared to algorithm configuration with longer learning windows. 
    more » « less