skip to main content

Title: Material characterization and structural response under earthquake loads of hakka rammed earth buildings
Hakka Tulou are rammed earth buildings that have survived material aging, natural weathering and earthquakes for hundreds of years. Previous paper has reported our observations and findings from nondestructive evaluations in field with focus on the integrity of the rammed earth outer walls and inner timber structures as well as the thermal comfort of living in these buildings [1]. This paper presents the structural response of Tulou buildings under earthquake loads using material data from field and employing finite element (FE) analysis program. The material characterization included scanning electron microscopy and compression strength/modulus of rammed earth samples and wall reinforcements, revealing their high strength and durability. The FE analyses were conducted on unreinforced Huanji Tulou as per the simplified lateral force analysis procedure defined by the Code ASCE-7 under three types of wall conditions: 1) unreinforced rammed earth outer wall only, 2) reinforced rammed earth outer wall without inner wooden structures, and 3) unreinforced rammed earth outer wall with inner wooden structures. The FE modeling revealed that the existing large crack in the outer earth wall of Huanji Tulou would not have developed under a strong earthquake load if the earth walls were reinforced. Furthermore, the high volume rammed earth more » wall integrated with inner timber structures would have offered the building unique earthquake resistance. « less
; ;
Guo, Adam
Award ID(s):
Publication Date:
Journal Name:
Sustainable Structures
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies of recorded ground motions and simulations have shown that deep sedimentary basins can greatly increase the damage expected during earthquakes. Unlike past earthquake design provisions, future ones are likely to consider basin effects, but the consequences of accounting for these effects are uncertain. This article quantifies the impacts of basin amplification on the collapse risk of 4- to 24-story reinforced concrete wall building archetypes in the uncoupled direction. These buildings were designed for the seismic hazard level in Seattle according to the ASCE 7-16 design provisions, which neglect basin effects. For ground motion map frameworks that do consider basin effects (2018 USGS National Seismic Hazard Model), the average collapse risk for these structures would be 2.1% in 50 years, which exceeds the target value of 1%. It is shown that this 1% target could be achieved by: (1) increasing the design forces by 25%, (2) decreasing the drift limits from 2.0% to 1.25%, or (3) increasing the median drift capacity of the gravity systems to exceed 9%. The implications for these design changes are quantified in terms of the cross-sectional area of the walls, longitudinal reinforcement, and usable floor space. It is also shown that the collapse risk increases tomore »2.8% when the results of physics-based ground motion simulations are used for the large-magnitude Cascadia subduction interface earthquake contribution to the hazard. In this case, it is necessary to combine large changes in the drift capacities, design forces, and/or drift limits to meet the collapse risk target.

    « less
  2. Blass, Hans (Ed.)
    Wood buildings in North American has been predominantly constructed using light-framed wood systems since early 1900’s, with only limited exception of heavy timber construction in some non-residential applications. This situation is likely to change in the future with the growing acceptance of mass timber construction in the region. In fact, a number of mass timber buildings have been constructed in recent years in the U.S. and Canada, including low- to mid-rise mixed-use buildings (e.g. UMass Student Center, T3 building) and tall towers (e.g. Brocks Commons at UBC). Most of these buildings utilized cross laminated timber (CLT) or nail laminated timber (NLT) floors and heavy timber framing systems to support gravity loads, and a non-wood lateral system such as concrete shear walls or a braced steel frame to resist wind and seismic loads. Although CLT material and glulam products have been recognized in the U.S. and Canada (IBC (2018) and NBCC (2015), there is currently no mass timber lateral systems in the U.S. and only one system (platform style panelized CLT shear wall) in Canada that is currently recognized by the building codes. As a result, special design procedures and review/approval processes must be followed for any building intended to usemore »a mass timber lateral system. There is a need to promote codification of mass timber lateral systems in order to help further develop mass timber building market in North American. At the time of this paper, there has been an on-going effort to devel-op seismic design parameters for panelized CLT shear walls in the U.S. (ref) following the FEMA P695 procedure for platform construction. The other lateral system that at-tracted significant attention and research resources is post-tensioned CLT rocking wall system, which has the potential to be applicable to balloon framed low-rise to tall wood buildings. This paper will focus on recent research development on CLT rocking wall system in the U.S. and the effort to develop a seismic design procedure for this system for inclusion in the NDS Special Design Provisions for Wind and Seismic (SPDWS)(2008). While the expensive and time consuming process of the FEMA P695 process would provide the ability to use the equivalent lateral force method for design purposes, this path is not part of the discussion included here.« less
  3. Nonlinear time history analyses were conducted for 5-story and 12-story prototype buildings that used post-tensioned cross-laminated timber rocking walls coupled with U-shaped flexural plates (UFPs) as the lateral force resisting system. The building models were subjected to 22 far-field and 28 near-fault ground motions, with and without directivity effects, scaled to the design earthquake and maximum considered earthquake for Seattle, with ASCE Site Class D. The buildings were designed to performance objectives that limited structural damage to crushing at the wall toes and nonlinear deformation in the UFPs, while ensuring code-based interstory drift requirements were satisfied and the post-tensioned rods remained linear. The walls of the 12-story building had a second rocking joint at midheight to reduce flexural demands in the lower stories and interstory drift in the upper stories. The interstory drift, in-plane wall shear and overturning moment, UFP deformation, and extent of wall toe crushing is summarized for each building. Near-fault ground motions with directivity effects resulted in the largest demands for the 5-story building, while the midheight rocking joint diminished the influence of ground motion directivity effects in the 12-story building. Results for both buildings confirmed that UFPs located higher from the base of the walls dissipatedmore »more energy compared to UFPs closer to the base.« less
  4. Drywall partition walls are susceptible to damage at low-level drifts, and hence reducing such damage is key to achieving seismic resiliency in buildings. Prior tests on drywall partition walls have shown that slip track connection detailing leads to better performance than other detailing, such as fully-fixed connections. However, in all prior testing, partition wall performance was evaluated using a unidirectional loading protocol (either in-plane or out-of-plane) or in shake table testing. Moreover, all details are susceptible to considerable damage to wall intersections. Two phases of the test have been performed at the Natural Hazards Engineering Research Infrastructure (NHERI) Lehigh Equipment Facility to develop improved details of drywall partition walls under bidirectional loading. The partition walls were tested alongside a cross-laminated timber (CLT) post-tensioned rocking wall subassembly, wherein the CLT system is under development as a resilient lateral system for tall timber buildings. In the Phase 1, the slip behavior of conventional slip-track detailing was compared to telescoping detailing (track-within-a-track deflection assembly). In the Phase 2, two details for reducing the wall intersection damage were evaluated on traditional slip-track C-shaped walls. First, a corner gap detail was tested. This detail incorporates a gap through the wall intersection to reduce the collisionmore »damage at two intersecting walls. Second, a distributed gap detail was tested. In this approach, the aim was to reduce damage by using more frequent control joints through the length of the wall. All walls were tested under a bidirectional loading protocol with three sub-cycles: in-plane, a bi-directional hexagonal load path, and a bi-directional hexagonal load path with an increase in the out-of-plane drift. This loading protocol allows for studying the bidirectional behavior of walls and evaluating the effect of out-of-plane drift on the partition wall resisting force. In the Phase 1, the telescoping detailing performed better than conventional slip track detailing because it eliminated damage to the framing. In Phase 2, the distributed gap detailing delayed damage to about 1% story drift. For the corner gap detailing, the sacrificial corner bead detached at low drifts, but the wall itself was damage-free until 2.5% drift. Bidirectional loading was found to have an insignificant influence on the in-plane resistance of the walls, and the overall resistance of the walls was trivial compared to the CLT rocking.« less
  5. An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance ofmore »the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse.« less