skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Visual Inertial Odometry Framework for 3D Points, Lines and Planes
Recovering rigid registration between successive camera poses lies at the heart of 3D reconstruction, SLAM and visual odometry. Registration relies on the ability to compute discriminative 2D features in successive camera images for determining feature correspondences, which is very challenging in feature-poor environments, i.e. low-texture and/or low-light environments. In this paper, we aim to address the challenge of recovering rigid registration between successive camera poses in feature-poor environments in a Visual Inertial Odometry (VIO) setting. In addition to inertial sensing, we instrument a small aerial robot with an RGBD camera and propose a framework that unifies the incorporation of 3D geometric entities: points, lines, and planes. The tracked 3D geometric entities provide constraints in an Extended Kalman Filtering framework. We show that by directly exploiting 3D geometric entities, we can achieve improved registration. We demonstrate our approach on different texture-poor environments, with some containing only flat texture-less surfaces providing essentially no 2D features for tracking. In addition, we evaluate how the addition of different 3D geometric entities contributes to improved pose estimation by comparing an estimated pose trajectory to a ground truth pose trajectory obtained from a motion capture system. We consider computationally efficient methods for detecting 3D points, lines and planes, since our goal is to implement our approach on small mobile robots, such as drones.  more » « less
Award ID(s):
1828010
PAR ID:
10344405
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
9206 to 9211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IEEE (Ed.)
    This paper addresses the robustness problem of visual-inertial state estimation for underwater operations. Underwater robots operating in a challenging environment are required to know their pose at all times. All vision-based localization schemes are prone to failure due to poor visibility conditions, color loss, and lack of features. The proposed approach utilizes a model of the robot's kinematics together with proprioceptive sensors to maintain the pose estimate during visual-inertial odometry (VIO) failures. Furthermore, the trajectories from successful VIO and the ones from the model-driven odometry are integrated in a coherent set that maintains a consistent pose at all times. Health-monitoring tracks the VIO process ensuring timely switches between the two estimators. Finally, loop closure is implemented on the overall trajectory. The resulting framework is a robust estimator switching between model-based and visual-inertial odometry (SM/VIO). Experimental results from numerous deployments of the Aqua2 vehicle demonstrate the robustness of our approach over coral reefs and a shipwreck. 
    more » « less
  2. Robust feature matching forms the backbone for most Visual Simultaneous Localization and Mapping (vSLAM), visual odometry, 3D reconstruction, and Structure from Motion (SfM) algorithms. However, recovering feature matches from texture-poor scenes is a major challenge and still remains an open area of research. In this paper, we present a Stereo Visual Odometry (StereoVO) technique based on point and line features which uses a novel feature-matching mechanism based on an Attention Graph Neural Network that is designed to perform well even under adverse weather conditions such as fog, haze, rain, and snow, and dynamic lighting conditions such as nighttime illumination and glare scenarios. We perform experiments on multiple real and synthetic datasets to validate our method's ability to perform StereoVO under low-visibility weather and lighting conditions through robust point and line matches. The results demonstrate that our method achieves more line feature matches than state-of-the-art line-matching algorithms, which when complemented with point feature matches perform consistently well in adverse weather and dynamic lighting conditions. 
    more » « less
  3. Unsupervised visual odometry as an active topic has attracted extensive attention, benefiting from its label-free practical value and robustness in real-world scenarios. However, the performance of camera pose estimation and tracking through deep neural network is still not as ideal as most other tasks, such as detection, segmentation and depth estimation, due to the lack of drift correction in the estimated trajectory and map optimization in the recovered 3D scenes. In this work, we introduce pose graph and bundle adjustment optimization to our network training process, which iteratively updates both the motion and depth estimations from the deep learning network, and enforces the refined outputs to further meet the unsupervised photometric and geometric constraints. The integration of pose graph and bundle adjustment is easy to implement and significantly enhances the training effectiveness. Experiments on KITTI dataset demonstrate that the introduced method achieves a significant improvement in motion estimation compared with other recent unsupervised monocular visual odometry algorithms. 
    more » « less
  4. Unsupervised visual odometry as an active topic has attracted extensive attention, benefiting from its label free practical value and robustness in real-world scenarios. However, the performance of camera pose estimation and tracking through deep neural network is still not as ideal as most other tasks, such as detection, segmentation and depth estimation, due to the lack of drift correction in the estimated trajectory and map optimization in the recovered 3D scenes. In this work, we introduce pose graph and bundle adjustment optimization to our network training process, which iteratively updates both the motion and depth estimations from the deep learning network, and enforces the refined outputs to further meet the unsupervised photometric and geometric constraints. The integration of pose graph and bundle adjustment is easy to implement and significantly enhances the training effectiveness. Experiments on KITTI dataset demonstrate that the introduced method achieves a significant improvement in motion estimation compared with other recent unsupervised monocular visual odometry algorithms. 
    more » « less
  5. There is a lack of datasets for visual-inertial odometry applications in Extended Reality (XR). To the best of our knowledge, there is no dataset available that is captured from an XR headset with a human as a carrier. To bridge this gap, we present a novel pose estimation dataset --- called HoloSet --- collected using Microsoft Hololens 2, which is a state-of-the-art head mounted device for XR. Potential applications for HoloSet include visual-inertial odometry, simultaneous localization and mapping (SLAM), and additional applications in XR that leverage visual-inertial data. HoloSet captures both macro and micro movements. For macro movements, the dataset consists of more than 66,000 samples of visual, inertial, and depth camera data in a variety of environments (indoor, outdoor) and scene setups (trails, suburbs, downtown) under multiple user action scenarios (walk, jog). For micro movements, the dataset consists of more than 12,000 samples of additional articulated hand depth camera images while a user plays games that exercise fine motor skills and hand-eye coordination. We present basic visualizations and high-level statistics of the data and outline the potential research use cases for HoloSet. 
    more » « less