skip to main content

This content will become publicly available on February 1, 2023

Title: Proceedings of MOBICOM 2021
This paper presents Millimetro, an ultra-low-power tag that can be localized at high accuracy over extended distances. We develop Mil-limetro in the context of autonomous driving to efficiently localize roadside infrastructure such as lane markers and road signs, even if obscured from view, where visual sensing fails. While RF-based localization offers a natural solution, current ultra-low-power local-ization systems struggle to operate accurately at extended ranges under strict latency requirements. Millimetro addresses this challenge by re-using existing automotive radars that operate at mmWave fre-quency where plentiful bandwidth is available to ensure high accuracy and low latency. We address the crucial free space path loss problem experienced by signals from the tag at mmWave bands by building upon Van Atta Arrays that retro-reflect incident energy back towards the transmitting radar with minimal loss and low power consumption. Our experimental results indoors and outdoors demonstrate a scal-able system that operates at a desirable range (over 100 m), accuracy (centimeter-level), and ultra-low-power (< 3 uW).
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the annual International Conference on Mobile Computing and Networking
Sponsoring Org:
National Science Foundation
More Like this
  1. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely onmore »some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: (G. Koutsandria). (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively.« less
  2. Tag localization is crucial for many context-aware and automation applications in smart homes, retail stores, or warehouses. While custom localization technologies (e.g RFID) have the potential to support low-cost battery-free tag tracking, the cost and complexity of commissioning a space with beacons or readers has stifled adoption. In this paper, we explore how WiFi backscatter localization can be realized using the existing WiFi infrastructure already deployed for data applications. We present a new approach that leverages existing WiFi infrastructure to enable extremely low-power and accurate tag localization relative to a single scanning device. First, we adopt an ultra-low power tagmore »design in which the tag blindly modulates ongoing WiFi packets using On-Off Keying (OOK). Then, we utilize the underlying physical properties of multipath propagation to detect the passive wireless reflection from the tag in the presence of rich multipath propagations. Finally, we localize the tag from a single receiver by forming a triangle between the tag reflection and the LoS path between the two WiFi transceivers. We implement TagFi using a customized backscatter tag and off-the-shelf WiFi chipsets. Our empirical results in a cluttered office building demonstrate that TagFi achieves a median localization accuracy of 0.2m up to 8 meters range.« less
  3. Next-generation mobile networks (5G and beyond) are expected to provide higher data rates and ultra-low latency in support of demanding applications, such as virtual and augmented reality, robots and drones, etc. To meet these stringent requirements, edge computing constitutes a central piece of the solution architecture wherein functional components of an application can be deployed over the edge network so as to reduce bandwidth demand over the core network while providing ultra-low latency communication to users. In this paper, we investigate the joint optimal placement of virtual service chains consisting of virtual application functions (components) and the steering of trafficmore »through them, over a 5G multi-technology edge network model consisting of both Ethernet and mmWave links. This problem is NP-hard. We provide a comprehensive “microscopic" binary integer program to model the system, along with a heuristic that is one order of magnitude faster than solving the corresponding binary integer program. Extensive evaluations demonstrate the benefits of managing virtual service chains (by distributing them over the edge network) compared to a baseline “middlebox" approach in terms of overall admissible virtual capacity. We observe significant gains when deploying mmWave links that complement the Ethernet physical infrastructure. Moreover, most of the gains are attributed to only 30% of these mmWave links.« less
  4. Advancements in ultra-low-power tiny machine learning (TinyML) systems promise to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted and easily reproducible benchmark for these systems. To meet this need, we present MLPerf Tiny, the first industry-standard benchmark suite for ultra-low-power tiny machine learning systems. The benchmark suite is the collaborative effort of more than 50 organizations from industry and academia and reflects the needs of the community. MLPerf Tiny measures the accuracy, latency, and energy of machine learning inference to properly evaluate the tradeoffs between systems. Additionally, MLPerfmore »Tiny implements a modular design that enables benchmark submitters to show the benefits of their product, regardless of where it falls on the ML deployment stack, in a fair and reproducible manner. The suite features four benchmarks: keyword spotting, visual wake words, image classification, and anomaly detection.« less
  5. In this paper, we investigate covert communication over millimeter-wave (mmWave) frequencies. In particular, a dual-beam mmWave transmitter, comprised of two independent antenna arrays, attempts to reliably communicate to a receiver Bob when hiding the existence of transmission from a warden Willie. In this regard, operating over mmWave bands not only increases the covertness thanks to directional beams, but also increases the transmission data rates given much more available bandwidths and enables ultra-low form factor transceivers due to the lower wavelengths used compared to the conventional radio frequency (RF) counterpart. We assume that the transmitter Alice employs one of its antennamore »arrays to form a directive beam for transmission to Bob. The other antenna array is used by Alice to generate another beam toward Willie as a jamming signal with its transmit power changing independently from a transmission block to another block. We characterize Willie's detection performance with the optimal detector and the closed-form of its expected value from Alice's perspective. We further derive the closed-form expression for the outage probability of the Alice-Bob link, which enables characterizing the optimal covert rate that can be achieved using the proposed setup. Our results demonstrate the superiority of mmWave covert communication, in terms of covertness and rate, compared to the RF counterpart.« less