Augmented Reality (AR) has been widely hailed as a representative of ultra-high bandwidth and ultra-low latency apps that will be enabled by 5G networks. While single-user AR can perform AR tasks locally on the mobile device, multi-user AR apps, which allow multiple users to interact within the same physical space, critically rely on the cellular network to support user interactions. However, a recent study showed that multi-user AR apps can experience very high end-to-end latency when running over LTE, rendering user interaction practically infeasible. In this paper, we study whether 5G mmWave, which promises significant bandwidth and latency improvements over LTE, can support multi-user AR by conducting an in-depth measurement study of the same popular multi-user AR app over both LTE and 5G mmWave. Our measurement and analysis show that: (1) The E2E AR latency over LTE is significantly lower compared to the values reported in the previous study. However, it still remains too high for practical user interaction. (2) 5G mmWave brings no benefits to multi-user AR apps. (3) While 5G mmWave reduces the latency of the uplink visual data transmission, there are other components of the AR app that are independent of the network technology and account for a significant fraction of the E2E latency. (4) The app drains 66% more network energy, which translates to 28% higher total energy over 5G mmWave compared to over LTE.
more »
« less
Proceedings of MOBICOM 2021
This paper presents Millimetro, an ultra-low-power tag that can be localized at high accuracy over extended distances. We develop Mil-limetro in the context of autonomous driving to efficiently localize roadside infrastructure such as lane markers and road signs, even if obscured from view, where visual sensing fails. While RF-based localization offers a natural solution, current ultra-low-power local-ization systems struggle to operate accurately at extended ranges under strict latency requirements. Millimetro addresses this challenge by re-using existing automotive radars that operate at mmWave fre-quency where plentiful bandwidth is available to ensure high accuracy and low latency. We address the crucial free space path loss problem experienced by signals from the tag at mmWave bands by building upon Van Atta Arrays that retro-reflect incident energy back towards the transmitting radar with minimal loss and low power consumption. Our experimental results indoors and outdoors demonstrate a scal-able system that operates at a desirable range (over 100 m), accuracy (centimeter-level), and ultra-low-power (< 3 uW).
more »
« less
- Award ID(s):
- 1823235
- PAR ID:
- 10297822
- Date Published:
- Journal Name:
- Proceedings of the annual International Conference on Mobile Computing and Networking
- ISSN:
- 1543-5679
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.more » « less
-
Next-generation mobile networks (5G and beyond) are expected to provide higher data rates and ultra-low latency in support of demanding applications, such as virtual and augmented reality, robots and drones, etc. To meet these stringent requirements, edge computing constitutes a central piece of the solution architecture wherein functional components of an application can be deployed over the edge network so as to reduce bandwidth demand over the core network while providing ultra-low latency communication to users. In this paper, we investigate the joint optimal placement of virtual service chains consisting of virtual application functions (components) and the steering of traffic through them, over a 5G multi-technology edge network model consisting of both Ethernet and mmWave links. This problem is NP-hard. We provide a comprehensive “microscopic" binary integer program to model the system, along with a heuristic that is one order of magnitude faster than solving the corresponding binary integer program. Extensive evaluations demonstrate the benefits of managing virtual service chains (by distributing them over the edge network) compared to a baseline “middlebox" approach in terms of overall admissible virtual capacity. We observe significant gains when deploying mmWave links that complement the Ethernet physical infrastructure. Moreover, most of the gains are attributed to only 30% of these mmWave links.more » « less
-
Tag localization is crucial for many context-aware and automation applications in smart homes, retail stores, or warehouses. While custom localization technologies (e.g RFID) have the potential to support low-cost battery-free tag tracking, the cost and complexity of commissioning a space with beacons or readers has stifled adoption. In this paper, we explore how WiFi backscatter localization can be realized using the existing WiFi infrastructure already deployed for data applications. We present a new approach that leverages existing WiFi infrastructure to enable extremely low-power and accurate tag localization relative to a single scanning device. First, we adopt an ultra-low power tag design in which the tag blindly modulates ongoing WiFi packets using On-Off Keying (OOK). Then, we utilize the underlying physical properties of multipath propagation to detect the passive wireless reflection from the tag in the presence of rich multipath propagations. Finally, we localize the tag from a single receiver by forming a triangle between the tag reflection and the LoS path between the two WiFi transceivers. We implement TagFi using a customized backscatter tag and off-the-shelf WiFi chipsets. Our empirical results in a cluttered office building demonstrate that TagFi achieves a median localization accuracy of 0.2m up to 8 meters range.more » « less
-
This paper presents LiTEfoot, an ultra-low power, wide-area localization system leveraging ambient cellular signals to address the limitations of traditional self-localization systems in terms of power consumption and latency. LiTEfoot uses a non-linear transformation of the cellular synchronization signal to efficiently achieve self-localization by systematically superimposing signals at the baseband. A simple envelope detector is used to realize this non-linear transformation, enabling the identification of multiple active base stations across any cellular band. The system is designed to operate with low power, consuming only 40 𝜇Joules of energy per localization update, achieving a median localization error of 22 meters in urban areas.more » « less