A novel electrochemical dopamine sensor was fabricated based on a composite film solely consisting of kappa-carrageenan and hierarchical porous carbon drop-casted onto a glassy carbon electrode in a conventional three electrode system. Graphene oxide was synthesized in a one-step thermal conversion from base-catalyzed alkali lignin. Five ratios by mass of a novel hierarchical porous activated carbon and kappa-carrageenan were studied for dopamine quantification without synthetic binders such as polytetrafluoroethylene. Various tests were performed to explicate structure and electrochemical properties of the films. Utilizing differential pulse voltammetry for detection, the optimized 10:1 ratio system elicited a linear range of 1–250
- Award ID(s):
- 1933861
- NSF-PAR ID:
- 10297912
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 11
- Issue:
- 25
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 15410 to 15415
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
μ mol l−1and a limit of detection of 0.14μ mol l−1(S/N = 3). Results suggested an effective new combination of materials for non-enzymatic dopamine sensing. -
This study aimed to explore lignin as a naturally occurring aromatic precursor for the synthesis of LIG and further fabrication of ultrasensitive strain sensors for the detection of small deformations. One-step direct laser writing (DLW) induced high quality porous graphene, so called laser induced graphene (LIG), from kraft lignin under the conditions optimized for laser power, focus distance, and lignin loading. An electrode based on the resulting LIG was facilely fabricated by transferring LIG onto an elastomeric substrate ( i.e. , Dragon Skin™). The novel LIG transfer was facilitated by spin coating followed by water lifting, leading to the full retention of porous graphene onto the elastomeric substrate. The strain sensor was shown to be highly sensitive to small human body motions and tiny deformations caused by vibrations. It had a working range of up to 14% strain with a gauge factor of 960 and showed high stability as evidenced by repetitive signals over 10 000 cycles at 4% strain. The sensor was also successfully demonstrated for detecting human speaking, breath, seismocardiography (SCG), and movement of pulse and eye. Overall, the lignin-derived LIG can serve as excellent piezoresistive materials for wearable, stretchable, and ultrasensitive strain sensors with applications in human body motion monitoring and sound-related applications.more » « less
-
Abstract Graphene with a 3D porous structure is directly laser‐induced on lignocellulosic biopaper under ambient conditions and is further explored for multifunctional biomass‐based flexible electronics. The mechanically strong, flexible, and waterproof biopaper is fabricated by surface‐functionalizing cellulose with lignin‐based epoxy acrylate (LBEA). This composite biopaper shows as high as a threefold increase in tensile strength and excellent waterproofing compared with pure cellulose one. Direct laser writing (DLW) rapidly induces porous graphene from the biopaper in a single step. The porous graphene shows an interconnected carbon network, well‐defined graphene domains, and high electrical conductivity (e.g., ≈3 Ω per square), which can be tuned by lignin precursors and loadings as well as lasing conditions. The biopaper in situ embedded with porous graphene is facilely fabricated into flexible electronics for on‐chip and paper‐based applications. The biopaper‐based electronic devices, including the all‐solid‐state planer supercapacitor, electrochemical and strain biosensors, and Joule heater, show great performances. This study demonstrates the facile, versatile, and low‐cost fabrication of multifunctional graphene‐based electronics from lignocellulose‐based biopaper.
-
Measurements of the gas sensing performance of nanomaterials typically involve the use of interdigitated electrodes (IDEs). A separate heater is often integrated to provide elevated temperature for improved sensing performance. However, the use of IDEs and separate heaters increases fabrication complexity. Here, a novel gas sensing platform based on a highly porous laser-induced graphene (LIG) pattern is reported. The LIG gas sensing platform consists of a sensing region and a serpentine interconnect region. A thin film of metal ( e.g. , Ag) coated in the serpentine interconnect region significantly reduces its resistance, thereby providing a localized Joule healing in the sensing region ( i.e. , self-heating) during typical measurements of chemoresistive gas sensors. Dispersing nanomaterials with different selectivity in the sensing region results in an array to potentially deconvolute various gaseous components in the mixture. The self-heating of the LIG gas sensing platform is first studied as a function of the applied voltage during resistance measurement and LIG geometric parameters ( e.g. , linewidth from 120 to 240 μm) to achieve an operating temperature from 20 to 80 °C. Systematic investigations of various nanomaterials demonstrate the feasibility of the LIG gas sensing performance. Taken together with the stretchable design layout in the serpentine interconnect region to provide mechanical robustness over a tensile strain of 20%, the gas sensor with a significant response (6.6‰ ppm −1 ), fast response/recovery processes, excellent selectivity, and an ultralow limit of detection (1.5 parts per billion) at a modest temperature from self-heating opens new opportunities in epidermal electronic devices.more » « less
-
Abstract Complex graphene electrode fabrication protocols including conventional chemical vapor deposition and graphene transfer techniques as well as more recent solution‐phase printing and postprint annealing methods have hindered the wide‐scale implementation of electrochemical devices including solid‐state ion‐selective electrodes (ISEs). Herein, a facile graphene ISE fabrication technique that utilizes laser induced graphene (LIG), formed by converting polyimide into graphene by a CO2laser and functionalization with ammonium ion (NH4+) and potassium ion (K+) ion‐selective membranes, is demonstrated. The electrochemical LIG ISEs exhibit a wide sensing range (0.1 × 10−3–150 × 10−3
m for NH4+and 0.3 × 10−3–150 × 10−3m for K+) with high stability (minimal drop in signal after 3 months of storage) across a wide pH range (3.5–9.0). The LIG ISEs are also able to monitor the concentrations of NH4+and K+in urine samples (29–51% and 17–61% increase for the younger and older patient; respectively, after dehydration induction), which correlate well with conventional hydration status measurements. Hence, these results demonstrate a facile method to perform in‐field ion sensing and are the first steps in creating a protocol for quantifying hydration levels through urine testing in human subjects.