Abstract The theoretical oscillation frequencies of even the best asteroseismic models of solar-like oscillators show significant differences from observed oscillation frequencies. Structure inversions seek to use these frequency differences to infer the underlying differences in stellar structure. While used extensively to study the Sun, structure inversion results for other stars have so far been limited. Applying sound speed inversions to more stars allows us to probe stellar theory over a larger range of conditions, as well as look for overall patterns that may hint at deficits in our current understanding. To that end, we present structure inversion results for 12 main-sequence solar-type stars with masses between 1 and 1.15M⊙. Our inversions are able to infer differences in the isothermal sound speed in the innermost 30% by radius of our target stars. In half of our target stars, the structure of our best-fit model fully agrees with the observations. In the remainder, the inversions reveal significant differences between the sound speed profile of the star and that of the model. We find five stars where the sound speed in the core of our stellar models is too low and one star showing the opposite behavior. For the two stars in which our inversions reveal the most significant differences, we examine whether changing the microphysics of our models improves them and find that changes to nuclear reaction rates or core opacities can reduce, but do not fully resolve, the differences.
more »
« less
This content will become publicly available on July 1, 2026
Asteroseismic Structure Inversions of Main-sequence Solar-like Oscillators with Convective Cores
Abstract Asteroseismic inferences of main-sequence solar-like oscillators often rely on best-fit models. However, these models cannot fully reproduce the observed mode frequencies, suggesting that the internal structure of the model does not fully match that of the star. Asteroseismic structure inversions provide a way to test the interior of our stellar models. Recently, structure inversion techniques were used to study 12 stars with radiative cores. In this work, we extend that analysis to 43 main-sequence stars with convective cores observed by Kepler to look for differences in the sound speed profiles in the inner 30% of the star by radius. For around half of our stars, the structure inversions show that our models reproduce the internal structure of the star, where the inversions are sensitive, within the observational uncertainties. For the stars where our inversions reveal significant differences, we find cases where our model sound speed is too high and cases where our model sound speed is too low. We use the star with the most significant differences to explore several changes to the physics of our model in an attempt to resolve the inferred differences. These changes include using a different overshoot prescription and including the effects of diffusion, gravitational settling, and radiative levitation. We find that the resulting changes to the model structure are too small to resolve the differences shown in our inversions.
more »
« less
- Award ID(s):
- 2205026
- PAR ID:
- 10625198
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 987
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 97
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Contact. The large quantity of high-quality asteroseismic data that have been obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar models, when applied as diagnostics of the model properties. Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we investigate the extent to which the differences in the model calculation affect the model oscillation frequencies and other asteroseismic diagnostics. Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we computed full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding model differences. Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational precision of these properties. This is particularly true for the nonradial modes whose mixed acoustic and gravity-wave character makes them sensitive to the structure of the deep stellar interior and, hence, to details of their evolution. In some cases, identifying these differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this. Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe intrinsic limitations in the modelling and improve our understanding of stellar internal physics. However, our analysis of the frequency differences and their relation to stellar internal properties provides a striking illustration of the potential, in particular, of the mixed modes of red-giant stars for the diagnostics of stellar interiors.more » « less
-
Abstract Seismic structure inversions have been used to study the solar interior for decades. With the high-precision frequencies obtained using data from the Kepler mission, it has now become possible to study other solar-like oscillators using structure inversions, including both main-sequence and subgiant stars. Subgiant stars are particularly interesting because they exhibit modes of mixed acoustic-buoyancy nature, which provide the opportunity to probe the deeper region of stellar cores. This work examines whether the structure inversion techniques developed for the pure acoustic modes of the Sun and other main-sequence stars are still valid for mixed modes observed in subgiant stars. We construct two grids of models: one of main-sequence stars and one of early subgiant stars. Using these grids, we examine two different parts of the inversion procedure. First, we examine what we call the “kernel errors,” which measure how well the mode sensitivity functions can recover known frequency differences between two models. Second, we test how these kernel errors affect the ability of an inversion to infer known structure differences. On the main sequence, we find that reliable structure inversion results can be obtained across the entire range of masses and large frequency separations we consider. On the subgiant branch, however, the rapid evolution of mixed modes leads to large kernel errors and hence difficulty recovering known structure differences. Our tests show that using mixed modes to infer the structure of subgiant stars reliably will require improvements to current fitting approaches and modifications to the structure inversion techniques.more » « less
-
Abstract G10.21-0.31 is a 70 μ m dark high-mass starless core ( M > 300 M ⊙ within r < 0.15 pc) identified in the Spitzer, Herschel, and APEX continuum surveys, and is believed to harbor the initial stages of high-mass star formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array observations to resolve the internal structure of this promising high-mass starless core. Sensitive high-resolution ALMA 1.3 mm dust continuum emission reveals three cores of mass ranging within 11–18 M ⊙ , characterized by a turbulent fragmentation. Cores 1, 2, and 3 represent a coherent evolution of three different stages, characterized by outflows (CO and SiO), gas temperature (H 2 CO), and deuteration (N 2 D + /N 2 H + ). We confirm the potential for formation of high-mass stars in G10.21 and explore the evolution path of high-mass star formation. Yet, no high-mass prestellar core is present in G10.21. This suggests a dynamical star formation where cores grow in mass over time.more » « less
-
Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (Kp= 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainTeff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M= 1.24 ± 0.05M⊙,R= 1.34 ± 0.02R⊙, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars.more » « less
An official website of the United States government
