skip to main content


Title: Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation
Abstract Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research  more » « less
Award ID(s):
1734449
NSF-PAR ID:
10298415
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
18
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Novelty

    Demonstrating the effects of including mass and internal dynamics of the actuator in simulations of assisted human movement

    A new OpenSim electric motor actuator class to capture the electromechanical dynamics for use in simulation of human movement assisted by powered robotic devices

     
    more » « less
  2. Baden, Tom (Ed.)
    Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal’s awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes’ undulatory body motions induce reafferent feedback that can encode the body’s instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors’ preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception. 
    more » « less
  3. null (Ed.)
    Sensory feedback during movement entails sensing a mix of externally- and self-generated stimuli (respectively, exafference and reafference). In many peripheral sensory systems, a parallel copy of the motor command, a corollary discharge, is thought to eliminate sensory feedback during behaviors. However, reafference has important roles in motor control, because it provides real-time feedback on the animal’s motions through the environment. In this case, the corollary discharge must be calibrated to enable feedback while avoiding negative consequences like sensor fatigue. The undulatory motions of fishes’ bodies generate induced flows that are sensed by the lateral line sensory organ, and prior work has shown these reafferent signals contribute to the regulation of swimming kinematics. Corollary discharge to the lateral line reduces the gain for reafference, but cannot eliminate it altogether. We develop a data-driven model integrating swimming biomechanics, hair cell physiology, and corollary discharge to understand how sensory modulation is calibrated during locomotion in larval zebrafish. In the absence of corollary discharge, lateral line afferent units exhibit the highly heterogeneous habituation rates characteristic of hair cell systems, typified by decaying sensitivity and phase distortions with respect to an input stimulus. Activation of the corollary discharge prevents habituation, reduces response heterogeneity, and regulates response phases in a narrow interval around the time of the peak stimulus. This suggests a synergistic interaction between the corollary discharge and the polarization of lateral line sensors, which sharpens sensitivity along their preferred axes. Our integrative model reveals a vital role of corollary discharge for ensuring precise feedback, including proprioception, during undulatory locomotion. 
    more » « less
  4. Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility.

     
    more » « less
  5. Language-guided human motion synthesis has been a challenging task due to the inherent complexity and diversity of human behaviors. Previous methods face limitations in generalization to novel actions, often resulting in unrealistic or incoherent motion sequences. In this paper, we propose ATOM (ATomic mOtion Modeling) to mitigate this problem, by decomposing actions into atomic actions, and employing a curriculum learning strategy to learn atomic action composition. First, we disentangle complex human motions into a set of atomic actions during learning, and then assemble novel actions using the learned atomic actions, which offers better adaptability to new actions. Moreover, we introduce a curriculum learning training strategy that leverages masked motion modeling with a gradual increase in the mask ratio, and thus facilitates atomic action assembly. This approach mitigates the overfitting problem commonly encountered in previous methods while enforcing the model to learn better motion representations. We demonstrate the effectiveness of ATOM through extensive experiments, including text-to-motion and action-to-motion synthesis tasks. We further illustrate its superiority in synthesizing plausible and coherent text-guided human motion sequences. 
    more » « less