skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tree Space Prototypes: Another Look at Making Tree Ensembles Interpretable
Ensembles of decision trees perform well on many problems, but are not interpretable. In contrast to existing approaches in interpretability that focus on explaining relationships between features and predictions, we propose an alternative approach to interpret tree ensemble classifiers by surfacing representative points for each class -- prototypes. We introduce a new distance for Gradient Boosted Tree models, and propose new, adaptive prototype selection methods with theoretical guarantees, with the flexibility to choose a different number of prototypes in each class. We demonstrate our methods on random forests and gradient boosted trees, showing that the prototypes can perform as well as or even better than the original tree ensemble when used as a nearest-prototype classifier. In a user study, humans were better at predicting the output of a tree ensemble classifier when using prototypes than when using Shapley values, a popular feature attribution method. Hence, prototypes present a viable alternative to feature-based explanations for tree ensembles.  more » « less
Award ID(s):
1712554
PAR ID:
10298436
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Foundations of data science
ISSN:
2639-8001
Page Range / eLocation ID:
23–34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ensemble models (bagging and gradient-boosting) of relational decision trees have proved to be some of the most effective learning methods in the area of probabilistic logic models (PLMs). While effective, they lose one of the most important benefits of PLMs—interpretability. In this paper we consider the problem of compressing a large set of learned trees into a single explainable model. To this effect, we propose CoTE—Compression of Tree Ensembles—that produces a single small decision list as a compressed representation. CoTE first converts the trees to decision lists and then performs the combination and compression with the aid of the original training set. An experimental evaluation demonstrates the effectiveness of CoTE in several benchmark relational data sets. 
    more » « less
  2. Summary Ensembles of decision trees are a useful tool for obtaining flexible estimates of regression functions. Examples of these methods include gradient-boosted decision trees, random forests and Bayesian classification and regression trees. Two potential shortcomings of tree ensembles are their lack of smoothness and their vulnerability to the curse of dimensionality. We show that these issues can be overcome by instead considering sparsity inducing soft decision trees in which the decisions are treated as probabilistic. We implement this in the context of the Bayesian additive regression trees framework and illustrate its promising performance through testing on benchmark data sets. We provide strong theoretical support for our methodology by showing that the posterior distribution concentrates at the minimax rate (up to a logarithmic factor) for sparse functions and functions with additive structures in the high dimensional regime where the dimensionality of the covariate space is allowed to grow nearly exponentially in the sample size. Our method also adapts to the unknown smoothness and sparsity levels, and can be implemented by making minimal modifications to existing Bayesian additive regression tree algorithms. 
    more » « less
  3. Multi-study learning uses multiple training studies, separately trains classifiers on individual studies, and then forms ensembles with weights rewarding members with better cross-study prediction ability. This article considers novel weighting approaches for constructing tree-based ensemble learners in this setting. Using Random Forests as a single-study learner, we perform a comparison of either weighting each forest to form the ensemble, or extracting the individual trees trained by each Random Forest and weighting them directly. We consider weighting approaches that reward cross-study replicability within the training set. We find that incorporating multiple layers of ensembling in the training process increases the robustness of the resulting predictor. Furthermore, we explore the mechanisms by which the ensembling weights correspond to the internal structure of trees to shed light on the important features in determining the relationship between the Random Forests algorithm and the true outcome model. Finally, we apply our approach to genomic datasets and show that our method improves upon the basic multi-study learning paradigm. 
    more » « less
  4. In this paper, we discuss the relevance and effectiveness of two com-mon methods for searching decision trees that represent design problems. When design problems are encoded in decision trees they are of-ten multimodal, capture a range of complexity in valid solutions, and have distinguishable internal locations. We propose the use of a simple Color Graph problem to represent these characteristics. The two methods evaluated are a genetic algorithm and a Monte Carlo tree search. Using the Color Graph problem, it is demonstrated that a genetic algorithm can perform exceptionally well on such unbounded and opaque design decision trees and that Monte Carlo tree searches are ineffective. Insights from this experiment are used to draw conclusions about the nature of design problems stored in decision trees and the need for new methods to search such trees and lead us to believe that exploitative methods are more effective than rigorously explorative methods. 
    more » « less
  5. Data on individual tree crowns from remote sensing have the potential to advance forest ecology by providing information about forest composition and structure with a continuous spatial coverage over large spatial extents. Classifying individual trees to their taxonomic species over large regions from remote sensing data is challenging. Methods to classify individual species are often accurate for common species, but perform poorly for less common species and when applied to new sites. We ran a data science competition to help identify effective methods for the task of classification of individual crowns to species identity. The competition included data from three sites to assess each methods’ ability to generalize patterns across two sites simultaneously and apply methods to an untrained site. Three different metrics were used to assess and compare model performance. Six teams participated, representing four countries and nine individuals. The highest performing method from a previous competition in 2017 was applied and used as a baseline to understand advancements and changes in successful methods. The best species classification method was based on a two-stage fully connected neural network that significantly outperformed the baseline random forest and gradient boosting ensemble methods. All methods generalized well by showing relatively strong performance on the trained sites (accuracy = 0.46–0.55, macro F1 = 0.09–0.32, cross entropy loss = 2.4–9.2), but generally failed to transfer effectively to the untrained site (accuracy = 0.07–0.32, macro F1 = 0.02–0.18, cross entropy loss = 2.8–16.3). Classification performance was influenced by the number of samples with species labels available for training, with most methods predicting common species at the training sites well (maximum F1 score of 0.86) relative to the uncommon species where none were predicted. Classification errors were most common between species in the same genus and different species that occur in the same habitat. Most methods performed better than the baseline in detecting if a species was not in the training data by predicting an untrained mixed-species class, especially in the untrained site. This work has highlighted that data science competitions can encourage advancement of methods, particularly by bringing in new people from outside the focal discipline, and by providing an open dataset and evaluation criteria from which participants can learn. 
    more » « less