skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: MTC: Multiresolution Tensor Completion from Partial and Coarse Observations
Existing tensor completion formulation mostly relies on partial observations from a single tensor. However, tensors extracted from real-world data often are more complex due to: (i) Partial observation: Only a small subset of tensor elements are available. (ii) Coarse observation: Some tensor modes only present coarse and aggregated patterns (e.g., monthly summary instead of daily reports). In this paper, we are given a subset of the tensor and some aggregated/coarse observations (along one or more modes) and seek to recover the original fine-granular tensor with low-rank factorization. We formulate a coupled tensor completion problem and propose an efficient Multi-resolution Tensor Completion model (MTC) to solve the problem. Our MTC model explores tensor mode properties and leverages the hierarchy of resolutions to recursively initialize an optimization setup, and optimizes on the coupled system using alternating least squares. MTC ensures low computational and space complexity. We evaluate our model on two COVID-19 related spatio-temporal tensors. The experiments show that MTC could provide 65.20% and 75.79% percentage of fitness (PoF) in tensor completion with only 5% fine granular observations, which is 27.96% relative improvement over the best baseline. To evaluate the learned low-rank factors, we also design a tensor prediction task for daily and cumulative disease case predictions, where MTC achieves 50% in PoF and 30% relative improvements over the best baseline.  more » « less
Award ID(s):
1838042
NSF-PAR ID:
10298959
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
Page Range / eLocation ID:
1953 to 1963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)

    Real-world spatio-temporal data is often incomplete or inaccurate due to various data loading delays. For example, a location-disease-time tensor of case counts can have multiple delayed updates of recent temporal slices for some locations or diseases. Recovering such missing or noisy (under-reported) elements of the input tensor can be viewed as a generalized tensor completion problem. Existing tensor completion methods usually assume that i) missing elements are randomly distributed and ii) noise for each tensor element is i.i.d. zero-mean. Both assumptions can be violated for spatio-temporal tensor data. We often observe multiple versions of the input tensor with different under-reporting noise levels. The amount of noise can be time- or location-dependent as more updates are progressively introduced to the tensor. We model such dynamic data as a multi-version tensor with an extra tensor mode capturing the data updates. We propose a low-rank tensor model to predict the updates over time. We demonstrate that our method can accurately predict the ground-truth values of many real-world tensors. We obtain up to 27.2% lower root mean-squared-error compared to the best baseline method. Finally, we extend our method to track the tensor data over time, leading to significant computational savings.

     
    more » « less
  2. We study a noisy tensor completion problem of broad practical interest, namely, the reconstruction of a low-rank tensor from highly incomplete and randomly corrupted observations of its entries. Whereas a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications or come with suboptimal statistical guarantees. Focusing on “incoherent” and well-conditioned tensors of a constant canonical polyadic rank, we propose a two-stage nonconvex algorithm—(vanilla) gradient descent following a rough initialization—that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all individual tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e., minimal sample complexity and optimal estimation accuracy). The estimation errors are evenly spread out across all entries, thus achieving optimal [Formula: see text] statistical accuracy. We also discuss how to extend our approach to accommodate asymmetric tensors. The insight conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  3. We study a completion problem of broad practical interest: the reconstruction of a low-rank symmetric tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications, or come with sub-optimal statistical guarantees. Focusing on incoherent'' and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm --- (vanilla) gradient descent following a rough initialization --- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all low-rank tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e. minimal sample complexity and optimal statistical accuracy). The insights conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  4. We study a completion problem of broad practical interest: the reconstruction of a low-rank symmetric tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications, or come with sub-optimal statistical guarantees. Focusing on incoherent'' and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm --- (vanilla) gradient descent following a rough initialization --- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all low-rank tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e. minimal sample complexity and optimal statistical accuracy). The insights conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  5. We consider the problem of tensor estimation from noisy observations with possibly missing entries. A nonparametric approach to tensor completion is developed based on a new model which we coin as sign representable tensors. The model represents the signal tensor of interest using a series of structured sign tensors. Unlike earlier methods, the sign series representation effectively addresses both low- and high-rank signals, while encompassing many existing tensor models— including CP models, Tucker models, single index models, structured tensors with repeating entries—as special cases. We provably reduce the tensor estimation problem to a series of structured classification tasks, and we develop a learning reduction machinery to empower existing low-rank tensor algorithms for more challenging high-rank estimation. Excess risk bounds, estimation errors, and sample complexities are established. We demonstrate the outperformance of our approach over previous methods on two datasets, one on human brain connectivity networks and the other on topic data mining. 
    more » « less