skip to main content


Title: Nonconvex Low-Rank Tensor Completion from Noisy Data
We study a noisy tensor completion problem of broad practical interest, namely, the reconstruction of a low-rank tensor from highly incomplete and randomly corrupted observations of its entries. Whereas a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications or come with suboptimal statistical guarantees. Focusing on “incoherent” and well-conditioned tensors of a constant canonical polyadic rank, we propose a two-stage nonconvex algorithm—(vanilla) gradient descent following a rough initialization—that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all individual tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e., minimal sample complexity and optimal estimation accuracy). The estimation errors are evenly spread out across all entries, thus achieving optimal [Formula: see text] statistical accuracy. We also discuss how to extend our approach to accommodate asymmetric tensors. The insight conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems.  more » « less
Award ID(s):
2218713 2218773 2100158 2014279 1900140 1907661
NSF-PAR ID:
10331362
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Operations Research
Volume:
70
Issue:
2
ISSN:
0030-364X
Page Range / eLocation ID:
1219 to 1237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study a completion problem of broad practical interest: the reconstruction of a low-rank symmetric tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications, or come with sub-optimal statistical guarantees. Focusing on incoherent'' and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm --- (vanilla) gradient descent following a rough initialization --- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all low-rank tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e. minimal sample complexity and optimal statistical accuracy). The insights conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  2. We study a completion problem of broad practical interest: the reconstruction of a low-rank symmetric tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications, or come with sub-optimal statistical guarantees. Focusing on incoherent'' and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm --- (vanilla) gradient descent following a rough initialization --- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all low-rank tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e. minimal sample complexity and optimal statistical accuracy). The insights conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems. 
    more » « less
  3. This work focuses on canonical polyadic decomposition (CPD) for large-scale tensors. Many prior works rely on data sparsity to develop scalable CPD algorithms, which are not suitable for handling dense tensor, while dense tensors often arise in applications such as image and video processing. As an alternative, stochastic algorithms utilize data sampling to reduce per-iteration complexity and thus are very scalable, even when handling dense tensors. However, existing stochastic CPD algorithms are facing some challenges. For example, some algorithms are based on randomly sampled tensor entries, and thus each iteration can only updates a small portion of the latent factors. This may result in slow improvement of the estimation accuracy of the latent factors. In addition, the convergence properties of many stochastic CPD algorithms are unclear, perhaps because CPD poses a hard nonconvex problem and is challenging for analysis under stochastic settings. In this work, we propose a stochastic optimization strategy that can effectively circumvent the above challenges. The proposed algorithm updates a whole latent factor at each iteration using sampled fibers of a tensor, which can quickly increase the estimation accuracy. The algorithm is flexible-many commonly used regularizers and constraints can be easily incorporated in the computational framework. The algorithm is also backed by a rigorous convergence theory. Simulations on large-scale dense tensors are employed to showcase the effectiveness of the algorithm. 
    more » « less
  4. We consider the problem of decomposing a higher-order tensor with binary entries. Such data problems arise frequently in applications such as neuroimaging, recommendation system, topic modeling, and sensor network localization. We propose a multilinear Bernoulli model, develop a rank-constrained likelihood-based estimation method, and obtain the theoretical accuracy guarantees. In contrast to continuous-valued problems, the binary tensor problem exhibits an interesting phase transition phenomenon according to the signal-to-noise ratio. The error bound for the parameter tensor estimation is established, and we show that the obtained rate is minimax optimal under the considered model. Furthermore, we develop an alternating optimization algorithm with convergence guarantees. The efficacy of our approach is demonstrated through both simulations and analyses of multiple data sets on the tasks of tensor completion and clustering. 
    more » « less
  5. null (Ed.)
    Abstract Higher-order tensors can represent scores in a rating system, frames in a video, and images of the same subject. In practice, the measurements are often highly quantized due to the sampling strategies or the quality of devices. Existing works on tensor recovery have focused on data losses and random noises. Only a few works consider tensor recovery from quantized measurements but are restricted to binary measurements. This paper, for the first time, addresses the problem of tensor recovery from multi-level quantized measurements by leveraging the low CANDECOMP/PARAFAC (CP) rank property. We study the recovery of both general low-rank tensors and tensors that have tensor singular value decomposition (TSVD) by solving nonconvex optimization problems. We provide the theoretical upper bounds of the recovery error, which diminish to zero when the sizes of dimensions increase to infinity. We further characterize the fundamental limit of any recovery algorithm and show that our recovery error is nearly order-wise optimal. A tensor-based alternating proximal gradient descent algorithm with a convergence guarantee and a TSVD-based projected gradient descent algorithm are proposed to solve the nonconvex problems. Our recovery methods can also handle data losses and do not necessarily need the information of the quantization rule. The methods are validated on synthetic data, image datasets, and music recommender datasets. 
    more » « less