skip to main content


Title: New Frontiers of Multi-Network Mining: Recent Developments and Future Trend
Networks (i.e., graphs) are often collected from multiple sources and platforms, such as social networks extracted from multiple online platforms, team-specific collaboration networks within an organization, and inter-dependent infrastructure networks, etc. Such networks from different sources form the multi-networks, which can exhibit the unique patterns that are invisible if we mine the individual network separately. However, compared with single-network mining, multi-network mining is still under-explored due to its unique challenges. First ( multi-network models ), networks under different circumstances can be modeled into a variety of models. How to properly build multi-network models from the complex data? Second ( multi-network mining algorithms ), it is often nontrivial to either extend single-network mining algorithms to multi-networks or design new algorithms. How to develop effective and efficient mining algorithms on multi-networks? The objectives of this tutorial are to: (1) comprehensively review the existing multi-network models, (2) elaborate the techniques in multi-network mining with a special focus on recent advances, and (3) elucidate open challenges and future research directions. We believe this tutorial could be beneficial to various application domains, and attract researchers and practitioners from data mining as well as other interdisciplinary fields.  more » « less
Award ID(s):
1939725 1947135
NSF-PAR ID:
10299096
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
KDD
Page Range / eLocation ID:
4038 to 4039
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  2. null (Ed.)
    Network embedding has demonstrated effective empirical performance for various network mining tasks such as node classification, link prediction, clustering, and anomaly detection. However, most of these algorithms focus on the single-view network scenario. From a real-world perspective, one individual node can have different connectivity patterns in different networks. For example, one user can have different relationships on Twitter, Facebook, and LinkedIn due to varying user behaviors on different platforms. In this case, jointly considering the structural information from multiple platforms (i.e., multiple views) can potentially lead to more comprehensive node representations, and eliminate noises and bias from a single view. In this paper, we propose a view-adversarial framework to generate comprehensive and robust multi-view network representations named VANE, which is based on two adversarial games. The first adversarial game enhances the comprehensiveness of the node representation by discriminating the view information which is obtained from the subgraph induced by neighbors of that node. The second adversarial game improves the robustness of the node representation with the challenging of fake node representations from the generative adversarial net. We conduct extensive experiments on downstream tasks with real-world multi-view networks, which shows that our proposed VANE framework significantly outperforms other baseline methods. 
    more » « less
  3. Abstract

    It is often desirable to simulate a single temperature series or a collection (network) of temperature series. Accurate simulations can enhance our understanding of temperature trends and variabilities. Simulation can also be used to generate data with known specifications, which are useful in assessing climate data processing routines such as quality control and homogenization algorithms. Possessing multiple realistic temperature series is often beneficial as only one natural record of our climate is available. The current popularity of general circulation models (GCMs) demonstrates how important simulation techniques are. However, even with sophisticated downscaling, it is difficult to replicate station temperature data that have realistic seasonal cycles as well as realistic temporal and spatial correlations. This paper reviews and studies statistical time series methods that can replicate a single series or a network of series from data. The methods are purely statistical—no atmospheric dynamics are involved—and attempt to produce replicates of the records under study. The work here develops (a) methods that simulate temperatures from a fixed season (say a particular day or month of the year) that match the distributional characteristics of the observed data; (b) methods for simulating an entire series that matches the series' temporal autocorrelations and seasonal cycle; and (c) methods for simulating a network of series that reproduce the data's observed seasonal cycles and spatial and temporal autocorrelations. Applications are given throughout, including one where a GCM series and local station data are used in tandem to describe long‐term trends and inject realistic station‐level short‐term fluctuations. This paper can be used as a tutorial for the simulation of a single climate observation, an entire climate series, or a network of multiple climate series simultaneously. Extensions of the ideas that involve GCMs are also examined.

     
    more » « less
  4. Pickett, Brett E. ; Jurado, Kellie (Ed.)
    ABSTRACT Data that catalogue viral diversity on Earth have been fragmented across sources, disciplines, formats, and various degrees of open sharing, posing challenges for research on macroecology, evolution, and public health. Here, we solve this problem by establishing a dynamically maintained database of vertebrate-virus associations, called The Global Virome in One Network (VIRION). The VIRION database has been assembled through both reconciliation of static data sets and integration of dynamically updated databases. These data sources are all harmonized against one taxonomic backbone, including metadata on host and virus taxonomic validity and higher classification; additional metadata on sampling methodology and evidence strength are also available in a harmonized format. In total, the VIRION database is the largest open-source, open-access database of its kind, with roughly half a million unique records that include 9,521 resolved virus “species” (of which 1,661 are ICTV ratified), 3,692 resolved vertebrate host species, and 23,147 unique interactions between taxonomically valid organisms. Together, these data cover roughly a quarter of mammal diversity, a 10th of bird diversity, and ∼6% of the estimated total diversity of vertebrates, and a much larger proportion of their virome than any previous database. We show how these data can be used to test hypotheses about microbiology, ecology, and evolution and make suggestions for best practices that address the unique mix of evidence that coexists in these data. IMPORTANCE Animals and their viruses are connected by a sprawling, tangled network of species interactions. Data on the host-virus network are available from several sources, which use different naming conventions and often report metadata in different levels of detail. VIRION is a new database that combines several of these existing data sources, reconciles taxonomy to a single consistent backbone, and reports metadata in a format designed by and for virologists. Researchers can use VIRION to easily answer questions like “Can any fish viruses infect humans?” or “Which bats host coronaviruses?” or to build more advanced predictive models, making it an unprecedented step toward a full inventory of the global virome. 
    more » « less
  5. In today’s increasingly connected world, graph mining plays a piv- otal role in many real-world application domains, including social network analysis, recommendations, marketing and financial secu- rity. Tremendous efforts have been made to develop a wide range of computational models. However, recent studies have revealed that many widely-applied graph mining models could suffer from potential discrimination. Fairness on graph mining aims to develop strategies in order to mitigate bias introduced/amplified during the mining process. The unique challenges of enforcing fairness on graph mining include (1) theoretical challenge on non-IID nature of graph data, which may invalidate the basic assumption behind many existing studies in fair machine learning, and (2) algorith- mic challenge on the dilemma of balancing model accuracy and fairness. This tutorial aims to (1) present a comprehensive review of state-of-the-art techniques in fairness on graph mining and (2) identify the open challenges and future trends. In particular, we start with reviewing the background, problem definitions, unique challenges and related problems; then we will focus on an in-depth overview of (1) recent techniques in enforcing group fairness, indi- vidual fairness and other fairness notions in the context of graph mining, and (2) future directions in studying algorithmic fairness on graphs. We believe this tutorial could be attractive to researchers and practitioners in areas including data mining, artificial intel- ligence, social science and beneficial to a plethora of real-world application domains. 
    more » « less