skip to main content

Title: New Frontiers of Multi-Network Mining: Recent Developments and Future Trend
Networks (i.e., graphs) are often collected from multiple sources and platforms, such as social networks extracted from multiple online platforms, team-specific collaboration networks within an organization, and inter-dependent infrastructure networks, etc. Such networks from different sources form the multi-networks, which can exhibit the unique patterns that are invisible if we mine the individual network separately. However, compared with single-network mining, multi-network mining is still under-explored due to its unique challenges. First ( multi-network models ), networks under different circumstances can be modeled into a variety of models. How to properly build multi-network models from the complex data? Second ( multi-network mining algorithms ), it is often nontrivial to either extend single-network mining algorithms to multi-networks or design new algorithms. How to develop effective and efficient mining algorithms on multi-networks? The objectives of this tutorial are to: (1) comprehensively review the existing multi-network models, (2) elaborate the techniques in multi-network mining with a special focus on recent advances, and (3) elucidate open challenges and future research directions. We believe this tutorial could be beneficial to various application domains, and attract researchers and practitioners from data mining as well as other interdisciplinary fields.
Authors:
; ; ;
Award ID(s):
1939725 1947135
Publication Date:
NSF-PAR ID:
10299096
Journal Name:
KDD
Page Range or eLocation-ID:
4038 to 4039
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should producemore »identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues.« less
  2. Network embedding has demonstrated effective empirical performance for various network mining tasks such as node classification, link prediction, clustering, and anomaly detection. However, most of these algorithms focus on the single-view network scenario. From a real-world perspective, one individual node can have different connectivity patterns in different networks. For example, one user can have different relationships on Twitter, Facebook, and LinkedIn due to varying user behaviors on different platforms. In this case, jointly considering the structural information from multiple platforms (i.e., multiple views) can potentially lead to more comprehensive node representations, and eliminate noises and bias from a single view. In this paper, we propose a view-adversarial framework to generate comprehensive and robust multi-view network representations named VANE, which is based on two adversarial games. The first adversarial game enhances the comprehensiveness of the node representation by discriminating the view information which is obtained from the subgraph induced by neighbors of that node. The second adversarial game improves the robustness of the node representation with the challenging of fake node representations from the generative adversarial net. We conduct extensive experiments on downstream tasks with real-world multi-view networks, which shows that our proposed VANE framework significantly outperforms other baseline methods.
  3. In today’s increasingly connected world, graph mining plays a piv- otal role in many real-world application domains, including social network analysis, recommendations, marketing and financial secu- rity. Tremendous efforts have been made to develop a wide range of computational models. However, recent studies have revealed that many widely-applied graph mining models could suffer from potential discrimination. Fairness on graph mining aims to develop strategies in order to mitigate bias introduced/amplified during the mining process. The unique challenges of enforcing fairness on graph mining include (1) theoretical challenge on non-IID nature of graph data, which may invalidate the basic assumption behind many existing studies in fair machine learning, and (2) algorith- mic challenge on the dilemma of balancing model accuracy and fairness. This tutorial aims to (1) present a comprehensive review of state-of-the-art techniques in fairness on graph mining and (2) identify the open challenges and future trends. In particular, we start with reviewing the background, problem definitions, unique challenges and related problems; then we will focus on an in-depth overview of (1) recent techniques in enforcing group fairness, indi- vidual fairness and other fairness notions in the context of graph mining, and (2) future directions in studying algorithmic fairness onmore »graphs. We believe this tutorial could be attractive to researchers and practitioners in areas including data mining, artificial intel- ligence, social science and beneficial to a plethora of real-world application domains.« less
  4. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The Temple University Hospital Seizure Detection Corpus (TUSZ) [1] has been in distribution since April 2017. It is a subset of the TUH EEG Corpus (TUEG) [2] and the most frequently requested corpus from our 3,000+ subscribers. It was recently featured as the challenge task in the Neureka 2020 Epilepsy Challenge [3]. A summary of the development of the corpus is shown below in Table 1. The TUSZ Corpus is a fully annotated corpus, which means every seizure event that occurs within its files has been annotated. The data is selected from TUEG using a screening process that identifies files most likely to contain seizures [1]. Approximately 7% of the TUEG data contains a seizure event, so it is important we triage TUEG for high yield data. One hour of EEG data requires approximately one hour of human labor to complete annotation using the pipeline described below, so it is important from a financial standpoint that we accurately triage data. A summary of the labels being used to annotate the data is shown in Table 2. Certain standards are put into place to optimize the annotation process while not sacrificing consistency. Due to the nature of EEG recordings, some recordsmore »start off with a segment of calibration. This portion of the EEG is instantly recognizable and transitions from what resembles lead artifact to a flat line on all the channels. For the sake of seizure annotation, the calibration is ignored, and no time is wasted on it. During the identification of seizure events, a hard “3 second rule” is used to determine whether two events should be combined into a single larger event. This greatly reduces the time that it takes to annotate a file with multiple events occurring in succession. In addition to the required minimum 3 second gap between seizures, part of our standard dictates that no seizure less than 3 seconds be annotated. Although there is no universally accepted definition for how long a seizure must be, we find that it is difficult to discern with confidence between burst suppression or other morphologically similar impressions when the event is only a couple seconds long. This is due to several reasons, the most notable being the lack of evolution which is oftentimes crucial for the determination of a seizure. After the EEG files have been triaged, a team of annotators at NEDC is provided with the files to begin data annotation. An example of an annotation is shown in Figure 1. A summary of the workflow for our annotation process is shown in Figure 2. Several passes are performed over the data to ensure the annotations are accurate. Each file undergoes three passes to ensure that no seizures were missed or misidentified. The first pass of TUSZ involves identifying which files contain seizures and annotating them using our annotation tool. The time it takes to fully annotate a file can vary drastically depending on the specific characteristics of each file; however, on average a file containing multiple seizures takes 7 minutes to fully annotate. This includes the time that it takes to read the patient report as well as traverse through the entire file. Once an event has been identified, the start and stop time for the seizure is stored in our annotation tool. This is done on a channel by channel basis resulting in an accurate representation of the seizure spreading across different parts of the brain. Files that do not contain any seizures take approximately 3 minutes to complete. Even though there is no annotation being made, the file is still carefully examined to make sure that nothing was overlooked. In addition to solely scrolling through a file from start to finish, a file is often examined through different lenses. Depending on the situation, low pass filters are used, as well as increasing the amplitude of certain channels. These techniques are never used in isolation and are meant to further increase our confidence that nothing was missed. Once each file in a given set has been looked at once, the annotators start the review process. The reviewer checks a file and comments any changes that they recommend. This takes about 3 minutes per seizure containing file, which is significantly less time than the first pass. After each file has been commented on, the third pass commences. This step takes about 5 minutes per seizure file and requires the reviewer to accept or reject the changes that the second reviewer suggested. Since tangible changes are made to the annotation using the annotation tool, this step takes a bit longer than the previous one. Assuming 18% of the files contain seizures, a set of 1,000 files takes roughly 127 work hours to annotate. Before an annotator contributes to the data interpretation pipeline, they are trained for several weeks on previous datasets. A new annotator is able to be trained using data that resembles what they would see under normal circumstances. An additional benefit of using released data to train is that it serves as a means of constantly checking our work. If a trainee stumbles across an event that was not previously annotated, it is promptly added, and the data release is updated. It takes about three months to train an annotator to a point where their annotations can be trusted. Even though we carefully screen potential annotators during the hiring process, only about 25% of the annotators we hire survive more than one year doing this work. To ensure that the annotators are consistent in their annotations, the team conducts an interrater agreement evaluation periodically to ensure that there is a consensus within the team. The annotation standards are discussed in Ochal et al. [4]. An extended discussion of interrater agreement can be found in Shah et al. [5]. The most recent release of TUSZ, v1.5.2, represents our efforts to review the quality of the annotations for two upcoming challenges we hosted: an internal deep learning challenge at IBM [6] and the Neureka 2020 Epilepsy Challenge [3]. One of the biggest changes that was made to the annotations was the imposition of a stricter standard for determining the start and stop time of a seizure. Although evolution is still included in the annotations, the start times were altered to start when the spike-wave pattern becomes distinct as opposed to merely when the signal starts to shift from background. This cuts down on background that was mislabeled as a seizure. For seizure end times, all post ictal slowing that was included was removed. The recent release of v1.5.2 did not include any additional data files. Two EEG files had been added because, originally, they were corrupted in v1.5.1 but were able to be retrieved and added for the latest release. The progression from v1.5.0 to v1.5.1 and later to v1.5.2, included the re-annotation of all of the EEG files in order to develop a confident dataset regarding seizure identification. Starting with v1.4.0, we have also developed a blind evaluation set that is withheld for use in competitions. The annotation team is currently working on the next release for TUSZ, v1.6.0, which is expected to occur in August 2020. It will include new data from 2016 to mid-2019. This release will contain 2,296 files from 2016 as well as several thousand files representing the remaining data through mid-2019. In addition to files that were obtained with our standard triaging process, a part of this release consists of EEG files that do not have associated patient reports. Since actual seizure events are in short supply, we are mining a large chunk of data for which we have EEG recordings but no reports. Some of this data contains interesting seizure events collected during long-term EEG sessions or data collected from patients with a history of frequent seizures. It is being mined to increase the number of files in the corpus that have at least one seizure event. We expect v1.6.0 to be released before IEEE SPMB 2020. The TUAR Corpus is an open-source database that is currently available for use by any registered member of our consortium. To register and receive access, please follow the instructions provided at this web page: https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml. The data is located here: https://www.isip.piconepress.com/projects/tuh_eeg/downloads/tuh_eeg_artifact/v2.0.0/.« less
  5. Multi-sourced networks naturally appear in many application domains, ranging from bioinformatics, social networks, neuroscience to management. Although state-of-the-art offers rich models and algorithms to find various patterns when input networks are given, it has largely remained nascent on how vulnerable the mining results are due to the adversarial attacks. In this paper, we address the problem of attacking multi-network mining through the way of deliberately perturbing the networks to alter the mining results. The key idea of the proposed method (ADMIRING) is effective influence functions on the Sylvester equation defined over the input networks, which plays a central and unifying role in various multi-network mining tasks. The proposed algorithms bear two main advantages, including (1) effectiveness, being able to accurately quantify the rate of change of the mining results in response to attacks; and (2) generality, being applicable to a variety of multi-network mining tasks ( e.g., graph kernel, network alignment, cross-network node similarity) with different attacking strategies (e.g., edge/node removal, attribute alteration).