skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: System Integration of Neocortex, a Unique, Scalable AI Platform
To advance knowledge by enabling unprecedented AI speed and scalability, the Pittsburgh Supercomputing Center (PSC), a joint research center of Carnegie Mellon University and the University of Pittsburgh, in partnership with Cerebras Systems and Hewlett Packard Enterprise (HPE), has deployed Neocortex, an innovative computing platform that accelerates scientific discovery by vastly shortening the time required for deep learning training and inference, fosters greater integration of deep AI models with scientific workflows, and provides promising hardware for the development of more efficient algorithms for artificial intelligence and graph analytics. Neocortex advances knowledge by accelerating scientific research, enabling development of more accurate models and use of larger training data, scaling model parallelism to unprecedented levels, and focusing on human productivity by simplifying tuning and hyperparameter optimization to create a transformative hardware and software platform for the exploration of new frontiers. Neocortex has been integrated with PSC’s complementary infrastructure. This papers shares experiences, decisions, and findings made in that process. The system is serving science and engineering users via an early user access program. Valuable artifacts developed during the integration phase have been made available via a public repository and have been consulted by other AI system deployments that have seen Neocortex as an inspiration.  more » « less
Award ID(s):
1928147 2005597
PAR ID:
10299131
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Practice and Experience in Advanced Research Computing (PEARC '21)
Volume:
37
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nesmachnow, S.; Castro, H.; Tchernykh, A. (Ed.)
    Artificial intelligence (AI) is transforming research through analysis of massive datasets and accelerating simulations by factors of up to a billion. Such acceleration eclipses the speedups that were made possible though improvements in CPU process and design and other kinds of algorithmic advances. It sets the stage for a new era of discovery in which previously intractable challenges will become surmountable, with applications in fields such as discovering the causes of cancer and rare diseases, developing effective, affordable drugs, improving food sustainability, developing detailed understanding of environmental factors to support protection of biodiversity, and developing alternative energy sources as a step toward reversing climate change. To succeed, the research community requires a high-performance computational ecosystem that seamlessly and efficiently brings together scalable AI, general-purpose computing, and large-scale data management. The authors, at the Pittsburgh Supercomputing Center (PSC), launched a second-generation computational ecosystem to enable AI-enabled research, bringing together carefully designed systems and groundbreaking technologies to provide at no cost a uniquely capable platform to the research community. It consists of two major systems: Neocortex and Bridges-2. Neocortex embodies a revolutionary processor architecture to vastly shorten the time required for deep learning training, foster greater integration of artificial deep learning with scientific workflows, and accelerate graph analytics. Bridges-2 integrates additional scalable AI, high-performance computing (HPC), and high-performance parallel file systems for simulation, data pre- and post-processing, visualization, and Big Data as a Service. Neocortex and Bridges-2 are integrated to form a tightly coupled and highly flexible ecosystem for AI- and data-driven research. 
    more » « less
  2. Artificial intelligence (AI) has immense potential spanning research and industry. AI applications abound and are expanding rapidly, yet the methods, performance, and understanding of AI are in their infancy. Researchers face vexing issues such as how to improve performance, transferability, reliability, comprehensibility, and how better to train AI models with only limited data. Future progress depends on advances in hardware accelerators, software frameworks, system and architectures, and creating cross-cutting expertise between scientific and AI domains. Open Compass is an exploratory research project to conduct academic pilot studies on an advanced engineering testbed for artificial intelligence, the Compass Lab, culminating in the development and publication of best practices for the benefit of the broad scientific community. Open Compass includes the development of an ontology to describe the complex range of existing and emerging AI hardware technologies and the identification of benchmark problems that represent different challenges in training deep learning models. These benchmarks are then used to execute experiments in alternative advanced hardware solution architectures. Here we present the methodology of Open Compass and some preliminary results on analyzing the effects of different GPU types, memory, and topologies for popular deep learning models applicable to image processing. 
    more » « less
  3. Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace. 
    more » « less
  4. This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks. 
    more » « less
  5. This project addresses the urgent need for inclusive and scalable robotics training in architecture, engineering, and construction (AEC) through the integration of artificial intelligence (AI) and extended reality (XR) technologies. In collaboration with three Minority Serving Institutions (Florida International University, Arizona State University, and University of Hawai‘i at Mānoa), we developed and tested immersive, adaptive learning environments that personalize robotics education for diverse student populations. These efforts include a VR-based curriculum for industrial robotics, an AR curriculum for environmental sensing technologies, and an overarching Robotics Academy framework that promotes open knowledge exchange and workforce connectivity. By combining real-time performance analytics, natural language processing, and biometric inputs, our systems support individualized learning paths and help mitigate algorithmic bias. This research advances equitable access to robotics education and provides a replicable model for technology-driven workforce development in the AEC sector. Ongoing evaluation demonstrates improved learner engagement, accessibility, and cross-platform skill transferability. 
    more » « less