skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 15, 2026

Title: Robotics, Personalized Learning, Virtual Reality, Augmented Reality, Diversity, and Inclusion
This project addresses the urgent need for inclusive and scalable robotics training in architecture, engineering, and construction (AEC) through the integration of artificial intelligence (AI) and extended reality (XR) technologies. In collaboration with three Minority Serving Institutions (Florida International University, Arizona State University, and University of Hawai‘i at Mānoa), we developed and tested immersive, adaptive learning environments that personalize robotics education for diverse student populations. These efforts include a VR-based curriculum for industrial robotics, an AR curriculum for environmental sensing technologies, and an overarching Robotics Academy framework that promotes open knowledge exchange and workforce connectivity. By combining real-time performance analytics, natural language processing, and biometric inputs, our systems support individualized learning paths and help mitigate algorithmic bias. This research advances equitable access to robotics education and provides a replicable model for technology-driven workforce development in the AEC sector. Ongoing evaluation demonstrates improved learner engagement, accessibility, and cross-platform skill transferability.  more » « less
Award ID(s):
2315647
PAR ID:
10589994
Author(s) / Creator(s):
; ;
Publisher / Repository:
AMPS Architecture, media, politics, society proceedings series
Date Published:
Format(s):
Medium: X
Location:
Los Angeles
Sponsoring Org:
National Science Foundation
More Like this
  1. Yan, C; Chai, H; Sun, T; Yuan, PF (Ed.)
    Abstract. The building industry is facing environmental, technological, and economic challenges, placing significant pressure on preparing the workforce for Industry 4.0 needs. The fields of Architecture, Engineering, and Construction (AEC) are being reshaped by robotics technologies which demand new skills and creating disruptive change to job markets. Addressing the learning needs of AEC students, professionals, and industry workers is critical to ensuring the competitiveness of the future workforce. In recent years advancements in Information Technology, Augmented Reality (AR), Virtual Reality (VR), and Artificial Intelligence (AI) have led to new research and theories on virtual learning environments. In the AEC fields researchers are beginning to rethink current robotics training to counteract costly and resource-intensive in-person learning. However, much of this work has been focused on simulation physics and has yet to adequately address how to engage AEC learners with different learning abilities, styles, and diverse backgrounds.This paper presents the advantages and difficulties associated with using new technologies to develop virtual reality (VR) learning games for robotics. It describes an ongoing project for creating performance driven curriculum. Drawing on the Constructivist Learning Theory, the affordances of Adaptive Learning Systems, and data collection methods from the VR game environment, the project provides a customized and performance-oriented approach to carrying out practical robotics tasks in real-world scenarios. 
    more » « less
  2. This paper introduces the Intelligent Learning Platform for Robotics Operations (IL-PRO), a Virtual Reality (VR) system designed to enhance robotics training in the Architecture, Engineering, and Construction (AEC) industry. IL-PRO addresses the growing need for effective training methods as the AEC sector adopts robotic automation. The system integrates VR technology with game-assisted learning, combining online multimedia lessons for theory with immersive VR tasks for practical skills. Developed iteratively using Design-Based Research principles, IL-PRO incorporates realistic robot simulations and progressive task complexity. The VR environment, built in Unity, aims to enhance engagement, motor coordination, and spatial awareness in robotics training. While future goals include AI-driven personalized instruction, this work-in-progress focuses on VR curriculum development and implementation. The paper concludes by discussing future directions, including curriculum expansion and cross-institutional adoption, to establish new benchmarks in innovative robotics education for the AEC industry. 
    more » « less
  3. Ahram, Tareq; Karwowski, Waldemar (Ed.)
    AI, robotics, and automation are reshaping many industries, including the Architecture, Engineering, and Construction (AEC) industries. For students aiming to enter these evolving fields, comprehensive and accessible training in high-tech roles is becoming increasingly important. Traditional robotics education, while often effective, usually necessitates small class sizes and specialized equipment. On-the-job training introduces safety risks, particularly for inexperienced individuals. The integration of advanced technologies for training presents an alternative that reduces the need for extensive physical resources and minimizes safety concerns. This paper introduces the Intelligent Learning Platform for Robotics Operations (IL-PRO), an innovative project that integrates the use of Artificial Intelligence (AI), Virtual Reality (VR), and game-assisted learning for teaching robotic arms operations. The goal of this project is to address the limitations of traditional training through the implementation of personalized learning strategies supported by Adaptive Learning Systems (ALS). These systems hold the potential to transform education by customizing content to cater to various levels of understanding, preferred learning styles, past experiences, and diverse linguistic and socio-cultural backgrounds.Central to IL-PRO is the development of its ALS, which uses student progress variables and multimodal machine learning to infer students’ level of understanding and automate task and feedback delivery. The curriculum is organized into modules, starting with fundamental robotic concepts, and advancing to complex motion planning and programming. The curriculum is guided by a learner model that is continuously refined through data collection. Furthermore, the project incorporates gaming elements into its VR learning approach to create an engaging educational environment. Thus, the learning content is designed to engage students with simulated robots and input devices to solve sequences of game-based challenges. The challenge sequences are designed similarly to levels in a game, each with increasing complexity, in order to systematically incrementally build students' knowledge, skills, and confidence in robotic operations. The project is conducted by a team of interdisciplinary faculty from Florida International University (FIU), the University of California Irvine (UCI), the University of Hawaii (UH) and the University of Kansas-Missouri (UKM). The collaboration between these institutions enables the sharing of resources and expertise that are essential for the development of this comprehensive learning platform. 
    more » « less
  4. Virtual reality offers vast possibilities to enhance the conventional approach for delivering engineering education. The introduction of virtual reality technology into teaching can improve the undergraduate mechanical engineering curriculum by supplementing the traditional learning experience with outside-the-classroom materials. The Center for Aviation and Automotive Technological Education using Virtual E-Schools (CA2VES), in collaboration with the Clemson University Center for Workforce Development (CUCWD), has developed a comprehensive virtual reality-based learning system. The available e-learning materials include eBooks, mini-video lectures, three-dimensional virtual reality technologies, and online assessments. Select VR-based materials were introduced to students in a sophomore level mechanical engineering laboratory course via fourteen online course modules during a four-semester period. To evaluate the material, a comparison of student performance with and without the material, along with instructor feedback, was completed. Feedback from the instructor and the teaching assistant revealed that the material was effective in improving the laboratory safety and boosted student’s confidence in handling engineering tools. 
    more » « less
  5. null (Ed.)
    Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys. 
    more » « less