skip to main content


Title: Enhanced Macroanion Recognition of Superchaotropic Keggin Clusters Achieved by Synergy of Anion–π and Anion–Cation Interactions
Award ID(s):
1904397
NSF-PAR ID:
10299164
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
26
Issue:
70
ISSN:
0947-6539
Page Range / eLocation ID:
16802 to 16810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ability of a TrCl 4 − anion (Tr = Al, Ga, In, Tl) to engage in a triel bond with both a neutral NH 3 and CN − anion is assessed by ab initio quantum calculations in both the gas phase and in aqueous medium. Despite the absence of a positive σ or π-hole on the Lewis acid, strong triel bonds can be formed with either base. The complexation involves an internal restructuring of the tetrahedral TrCl 4 − monomer into a trigonal bipyramid shape, where the base can occupy either an axial or equatorial position. Although this rearrangement requires a substantial investment of energy, it aids the complexation by imparting a much more positive MEP to the site that is to be occupied by the base. Complexation with the neutral base is exothermic in the gas phase and even more so in water where interaction energies can exceed 30 kcal mol −1 . Despite the long-range coulombic repulsion between any pair of anions, CN − can also engage in a strong triel bond with TrCl 4 − . In the gas phase, complexation is endothermic, but dissociation of the metastable dimer is obstructed by an energy barrier. The situation is entirely different in solution, with large negative interaction energies of as much as −50 kcal mol −1 . The complexation remains an exothermic process even after the large monomer deformation energy is factored in. 
    more » « less
  2. Subcomponent self-assembly relies on cation coordination whereas the roles of anions often only emerge during the assembly process. When sites for anions are instead pre-programmed, they have the potential to be used as orthogonal elements to build up structure in a predictable and modular way. We explore this idea by combining cation (M + ) and anion (X − ) binding sites together and show the orthogonal and modular build up of structure in a multi-ion assembly. Cation binding is based on a ligand (L) made by subcomponent metal-imine chemistry (M + = Cu + , Au + ) while the site for anion binding (X − = BF 4 − , ClO 4 − ) derives from the inner cavity of cyanostar (CS) macrocycles. The two sites are connected by imine condensation between a pyridyl-aldehyde and an aniline-modified cyanostar. The target assembly [LM-CS-X-CS-ML], + generates two terminal metal complexation sites (LM and ML) with one central anion-bridging site (X) defined by cyanostar dimerization. We showcase modular assembly by isolating intermediates when the primary structure-directing ions are paired with weakly coordinating counter ions. Cation-directed (Cu + ) or anion-bridged (BF 4 − ) intermediates can be isolated along either cation–anion or anion–cation pathways. Different products can also be prepared in a modular way using Au + and ClO 4 − . This is also the first use of gold( i ) in subcomponent self-assembly. Pre-programmed cation and anion binding sites combine with judicious selection of spectator ions to provide modular noncovalent syntheses of multi-component architectures. 
    more » « less
  3. Based on Coulomb's Law alone, electrostatic repulsion between two anions is expected to prevent their dimerization. Contrary to that idea, this Tutorial Review will present evidence showing that anion–anion dimers of protic hydroxyanions can form readily, and describe conditions that facilitate their formation. From X-ray crystal structures, we learn that hydroxyanions dimerize and oligomerize by overcoming long-range electrostatic opposition. Common examples are hydroxyanions of phosphate, sulfate, and carbonate, often in partnership with charged and neutral receptors. Short-range hydrogen bonds between anionic donors and acceptors are defined as anti-electrostatic hydrogen bonds (AEHBs) with insight from theoretical studies. While anion dimers are difficult to identify unequivocally in solution, these solution dimers have recently been definitively identified. The development of the supramolecular chemistry of anion–anion dimers has led to applications in hierarchical assemblies, such as supramolecular polymers and hydrogen bonded organic frameworks. 
    more » « less