skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite element algorithms for nonlocal minimal graphs
We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter with piecewise linear finite elements. For the computation of the discrete solutions, we propose and study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation. We also present a wide variety of numerical experiments that illustrate qualitative and quantitative features of fractional minimal graphs and the associated discrete problems.  more » « less
Award ID(s):
1908267
PAR ID:
10299283
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematics in Engineering
Volume:
4
Issue:
2
ISSN:
2640-3501
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A fractional extension of the integrable Toda lattice with decaying data on the line is obtained. Completeness of squared eigenfunctions of a linear discrete real tridiagonal eigenvalue problem is derived. This completeness relation allows nonlinear evolution equations expressed in terms of operators to be written in terms of underlying squared eigenfunctions and is related to a discretization of the continuous Schrödinger equation. The methods are discrete counterparts of continuous ones recently used to find fractional integrable extensions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations. Inverse scattering transform (IST) methods are used to linearize and find explicit soliton solutions to the integrable fractional Toda (fToda) lattice equation. The methodology can also be used to find and solve fractional extensions of a Toda lattice hierarchy. 
    more » « less
  2. The purpose of this article is to study an approximation to an abstract Bessel-type problem, which is a generalization of the extension problem associated with fractional powers of the Laplace operator. Motivated by the success of such approaches in the analysis of time-stepping methods for abstract Cauchy problems, we adopt a similar framework herein. The proposed method differs from many standard techniques, as we approximate the true solution to the abstract problem, rather than solve an associated discrete problem. The numerical method is shown to be consistent, stable, and convergent in an appropriate Banach space. These results are built upon well understood results from semigroup theory. Numerical experiments are provided to demonstrate the theoretical results. 
    more » « less
  3. Abstract Our recent work on linear and affine dynamical systems has laid out a general framework for inferring the parameters of a differential equation model from a discrete set of data points collected from a system being modeled. It introduced a new class of inverse problems where qualitative information about the parameters and the associated dynamics of the system is determined for regions of the data space, rather than just for isolated experiments. Rigorous mathematical results have justified this approach and have identified common features that arise for certain classes of integrable models. In this work we present a thorough numerical investigation that shows that several of these core features extend to a paradigmatic linear-in-parameters model, the Lotka–Volterra (LV) system, which we consider in the conservative case as well as under the addition of terms that perturb the system away from this regime. A central construct for this analysis is a concise representation of parameter and dynamical features in the data space that we call thePn-diagram, which is particularly useful for visualization of the qualitative dependence of the system dynamics on data for low-dimensional (smalln) systems. Our work also exposes some new properties related to non-uniqueness that arise for these LV systems, with non-uniqueness manifesting as a multi-layered structure in the associatedP2-diagrams. 
    more » « less
  4. Abstract The modeling of nonlinear dynamical systems subject to strong and evolving nonsmooth nonlinearities is typically approached via integer-order differential equations. In this study, we present the possible application of variable-order (VO) fractional operators to a class of nonlinear lumped parameter models that have great practical relevance in mechanics and dynamics. Fractional operators are intrinsically multiscale operators that can act on both space- and time-dependent variables. Contrarily to their integer-order counterpart, fractional operators can have either fixed or VO. In the latter case, the order can be function of either independent or state variables. We show that when using VO equations to describe the response of dynamical systems, the order can evolve as a function of the response itself; therefore, allowing a natural and seamless transition between widely dissimilar dynamics. Such an intriguing characteristic allows defining governing equations for dynamical systems that are evolutionary in nature. Within this context, we present a physics-driven strategy to define VO operators capable of capturing complex and evolutionary phenomena. Specific examples include hysteresis in discrete oscillators and contact problems. Despite using simplified models to illustrate the applications of VO operators, we show numerical evidence of their unique modeling capabilities as well as their connection to more complex dynamical systems. 
    more » « less
  5. Trélat, E.; Zuazua, E. (Ed.)
    This chapter provides a brief review of recent developments on two nonlocal operators: fractional Laplacian and fractional time derivative. We start by accounting for several applications of these operators in imaging science, geophysics, harmonic maps, and deep (machine) learning. Various notions of solutions to linear fractional elliptic equations are provided and numerical schemes for fractional Laplacian and fractional time derivative are discussed. Special emphasis is given to exterior optimal control problems with a linear elliptic equation as constraints. In addition, optimal control problems with interior control and state constraints are considered. We also provide a discussion on fractional deep neural networks, which is shown to be a minimization problem with fractional in time ordinary differential equation as constraint. The paper concludes with a discussion on several open problems. 
    more » « less