skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Offline Contextual Bandits with Overparametrised Models
Recent results in supervised learning suggest that while overparameterized models have the capacity to overfit, they in fact generalize quite well. We ask whether the same phenomenon occurs for offline contextual bandits. Our results are mixed. Value-based algorithms benefit from the same generalization behavior as overparameterized supervised learning, but policy-based algorithms do not. We show that this discrepancy is due to the action-stability of their objectives. An objective is action-stable if there exists a prediction (action-value vector or action distribution) which is optimal no matter which action is observed. While value-based objectives are action-stable, policy-based objectives are unstable. We formally prove upper bounds on the regret of overparameterized value-based learning and lower bounds on the regret for policy-based algorithms. In our experiments with large neural networks, this gap between action-stable value-based objectives and unstable policy-based objectives leads to significant performance differences.  more » « less
Award ID(s):
1816753
PAR ID:
10299537
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
international conference on machine learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent results in supervised learning suggest that while overparameterized models have the capac- ity to overfit, they in fact generalize quite well. We ask whether the same phenomenon occurs for offline contextual bandits. Our results are mixed. Value-based algorithms benefit from the same gen- eralization behavior as overparameterized super- vised learning, but policy-based algorithms do not. We show that this discrepancy is due to the action-stability of their objectives. An ob- jective is action-stable if there exists a prediction (action-value vector or action distribution) which is optimal no matter which action is observed. While value-based objectives are action-stable, policy-based objectives are unstable. We formally prove upper bounds on the regret of overparam- eterized value-based learning and lower bounds on the regret for policy-based algorithms. In our experiments with large neural networks, this gap between action-stable value-based objectives and unstable policy-based objectives leads to signifi- cant performance differences. 
    more » « less
  2. We study algorithms using randomized value functions for exploration in reinforcement learning. This type of algorithms enjoys appealing empirical performance. We show that when we use 1) a single random seed in each episode, and 2) a Bernstein-type magnitude of noise, we obtain a worst-case O~(H√SAT) regret bound for episodic time-inhomogeneous Markov Decision Process where S is the size of state space, A is the size of action space, H is the planning horizon and T is the number of interactions. This bound polynomially improves all existing bounds for algorithms based on randomized value functions, and for the first time, matches the Ω(H√SAT) lower bound up to logarithmic factors. Our result highlights that randomized exploration can be near-optimal, which was previously achieved only by optimistic algorithms. To achieve the desired result, we develop 1) a new clipping operation to ensure both the probability of being optimistic and the probability of being pessimistic are lower bounded by a constant, and 2) a new recursive formula for the absolute value of estimation errors to analyze the regret. 
    more » « less
  3. Goal-oriented Reinforcement Learning, where the agent needs to reach the goal state while simultaneously minimizing the cost, has received significant attention in real-world applications. Its theoretical formulation, stochastic shortest path (SSP), has been intensively researched in the online setting. Nevertheless, it remains understudied when such an online interaction is prohibited and only historical data is provided. In this paper, we consider the offline stochastic shortest path problem when the state space and the action space are finite. We design the simple value iteration-based algorithms for tackling both offline policy evaluation (OPE) and offline policy learning tasks. Notably, our analysis of these simple algorithms yields strong instance-dependent bounds which can imply worst-case bounds that are near-minimax optimal. We hope our study could help illuminate the fundamental statistical limits of the offline SSP problem and motivate further studies beyond the scope of current consideration. 
    more » « less
  4. In the Hidden-Parameter MDP (HiP-MDP) framework, a family of reinforcement learning tasks is generated by varying hidden parameters specifying the dynamics and reward function for each individual task. The HiP-MDP is a natural model for families of tasks in which meta- and lifelong-reinforcement learning approaches can succeed. Given a learned context encoder that infers the hidden parameters from previous experience, most existing algorithms fall into two categories: model transfer and policy transfer, depending on which function the hidden parameters are used to parameterize. We characterize the robustness of model and policy transfer algorithms with respect to hidden parameter estimation error. We first show that the value function of HiP-MDPs is Lipschitz continuous under certain conditions. We then derive regret bounds for both settings through the lens of Lipschitz continuity. Finally, we empirically corroborate our theoretical analysis by varying the hyper-parameters governing the Lipschitz constants of two continuous control problems; the resulting performance is consistent with our theoretical results. 
    more » « less
  5. We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (δ,ϵ)-stationary point from O(ϵ^(-4),δ^(-1)) stochastic gradient queries to O(ϵ^(-3),δ^(-1)), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(ϵ^(-1.5),δ^(-0.5)). Our techniques also recover all optimal or best-known results for finding ϵ stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings. 
    more » « less