skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near-Optimal Randomized Exploration for Tabular Markov Decision Processes
We study algorithms using randomized value functions for exploration in reinforcement learning. This type of algorithms enjoys appealing empirical performance. We show that when we use 1) a single random seed in each episode, and 2) a Bernstein-type magnitude of noise, we obtain a worst-case O~(H√SAT) regret bound for episodic time-inhomogeneous Markov Decision Process where S is the size of state space, A is the size of action space, H is the planning horizon and T is the number of interactions. This bound polynomially improves all existing bounds for algorithms based on randomized value functions, and for the first time, matches the Ω(H√SAT) lower bound up to logarithmic factors. Our result highlights that randomized exploration can be near-optimal, which was previously achieved only by optimistic algorithms. To achieve the desired result, we develop 1) a new clipping operation to ensure both the probability of being optimistic and the probability of being pessimistic are lower bounded by a constant, and 2) a new recursive formula for the absolute value of estimation errors to analyze the regret.  more » « less
Award ID(s):
2023166
PAR ID:
10443270
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
35
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study model-free reinforcement learning (RL) algorithms for infinite-horizon average-reward Markov decision process (MDP), which is more appropriate for applications that involve continuing operations not divided into episodes. In contrast to episodic/discounted MDPs, theoretical understanding of model-free RL algorithms is relatively inadequate for the average-reward setting. In this paper, we consider both the online setting and the setting with access to a simulator. We develop computationally efficient model-free algorithms that achieve sharper guarantees on regret/sample complexity compared with existing results. In the online setting, we design an algorithm, UCB-AVG, based on an optimistic variant of variance-reduced Q-learning. We show that UCB-AVG achieves a regret bound $$\widetilde{O}(S^5A^2sp(h^*)\sqrt{T})$$ after $$T$$ steps, where $$S\times A$$ is the size of state-action space, and $sp(h^*)$ the span of the optimal bias function. Our result provides the first computationally efficient model-free algorithm that achieves the optimal dependence in $$T$$ (up to log factors) for weakly communicating MDPs, which is necessary for low regret. In contrast, prior results either are suboptimal in $$T$$ or require strong assumptions of ergodicity or uniformly mixing of MDPs. In the simulator setting, we adapt the idea of UCB-AVG to develop a model-free algorithm that finds an $$\epsilon$$-optimal policy with sample complexity $$\widetilde{O}(SAsp^2(h^*)\epsilon^{-2} + S^2Asp(h^*)\epsilon^{-1}).$$ This sample complexity is near-optimal for weakly communicating MDPs, in view of the minimax lower bound $$\Omega(SAsp(^*)\epsilon^{-2})$$. Existing work mainly focuses on ergodic MDPs and the results typically depend on $$t_{mix},$$ the worst-case mixing time induced by a policy. We remark that the diameter $$D$$ and mixing time $$t_{mix}$$ are both lower bounded by $sp(h^*)$, and $$t_{mix}$$ can be arbitrarily large for certain MDPs. On the technical side, our approach integrates two key ideas: learning an $$\gamma$$-discounted MDP as an approximation, and leveraging reference-advantage decomposition for variance in optimistic Q-learning. As recognized in prior work, a naive approximation by discounted MDPs results in suboptimal guarantees. A distinguishing feature of our method is maintaining estimates of value-difference between state pairs to provide a sharper bound on the variance of reference advantage. We also crucially use a careful choice of the discounted factor $$\gamma$$ to balance approximation error due to discounting and the statistical learning error, and we are able to maintain a good-quality reference value function with $O(SA)$ space complexity. 
    more » « less
  2. We study the problem of online binary classification where strategic agents can manipulate their observable features in predefined ways, modeled by a manipulation graph, in order to receive a positive classification. We show this setting differs in fundamental ways from classic (non-strategic) online classification. For instance, whereas in the non-strategic case, a mistake bound of ln |H| is achievable via the halving algorithm when the target function belongs to a known class H, we show that no deterministic algorithm can achieve a mistake bound o(Δ) in the strategic setting, where Δ is the maximum degree of the manipulation graph (even when |H| = O(Δ)). We complement this with a general algorithm achieving mistake bound O(Δ ln |H|). We also extend this to the agnostic setting, and show that this algorithm achieves a Δ multiplicative regret (mistake bound of O(Δ · OPT + Δ · ln |H|)), and that no deterministic algorithm can achieve o(Δ) multiplicative regret. Next, we study two randomized models based on whether the random choices are made before or after agents respond, and show they exhibit fundamental differences. In the first, fractional model, at each round the learner deterministically chooses a probability distribution over classifiers inducing expected values on each vertex (probabilities of being classified as positive), which the strategic agents respond to. We show that any learner in this model has to suffer linear regret. On the other hand, in the second randomized algorithms model, while the adversary who selects the next agent must respond to the learner's probability distribution over classifiers, the agent then responds to the actual hypothesis classifier drawn from this distribution. Surprisingly, we show this model is more advantageous to the learner, and we design randomized algorithms that achieve sublinear regret bounds against both oblivious and adaptive adversaries. 
    more » « less
  3. We present the first study on provably efficient randomized exploration in cooperative multi-agent reinforcement learning (MARL). We propose a unified algorithm framework for randomized exploration in parallel Markov Decision Processes (MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and the Langevin Monte Carlo exploration (LMC) strategy, respectively, which are flexible in design and easy to implement in practice. For a special class of parallel MDPs where the transition is (approximately) linear, we theoretically prove that both CoopTS-PHE and CoopTS-LMC achieve a $$\widetilde{\mathcal{O}}(d^{3/2}H^2\sqrt{MK})$$ regret bound with communication complexity $$\widetilde{\mathcal{O}}(dHM^2)$$, where $$d$$ is the feature dimension, $$H$$ is the horizon length, $$M$$ is the number of agents, and $$K$$ is the number of episodes. This is the first theoretical result for randomized exploration in cooperative MARL. We evaluate our proposed method on multiple parallel RL environments, including a deep exploration problem (i.e., $$N$$-chain), a video game, and a real-world problem in energy systems. Our experimental results support that our framework can achieve better performance, even under conditions of misspecified transition models. Additionally, we establish a connection between our unified framework and the practical application of federated learning. 
    more » « less
  4. We present the first study on provably efficient randomized exploration in cooperative multi-agent reinforcement learning (MARL). We propose a unified algorithm framework for randomized exploration in parallel Markov Decision Processes (MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and the Langevin Monte Carlo exploration (LMC) strategy, respectively, which are flexible in design and easy to implement in practice. For a special class of parallel MDPs where the transition is (approximately) linear, we theoretically prove that both CoopTS-PHE and CoopTS-LMC achieve a $$\widetilde{\mathcal{O}}(d^{3/2}H^2\sqrt{MK})$$ regret bound with communication complexity $$\widetilde{\mathcal{O}}(dHM^2)$$, where $$d$$ is the feature dimension, $$H$$ is the horizon length, $$M$$ is the number of agents, and $$K$$ is the number of episodes. This is the first theoretical result for randomized exploration in cooperative MARL. We evaluate our proposed method on multiple parallel RL environments, including a deep exploration problem (i.e., $$N$$-chain), a video game, and a real-world problem in energy systems. Our experimental results support that our framework can achieve better performance, even under conditions of misspecified transition models. Additionally, we establish a connection between our unified framework and the practical application of federated learning. 
    more » « less
  5. null (Ed.)
    https://arxiv.org/abs/2010.13724 We study the question of obtaining last-iterate convergence rates for no-regret learning algorithms in multi-player games. We show that the optimistic gradient (OG) algorithm with a constant step-size, which is no-regret, achieves a last-iterate rate of O(1/T‾‾√) with respect to the gap function in smooth monotone games. This result addresses a question of Mertikopoulos & Zhou (2018), who asked whether extra-gradient approaches (such as OG) can be applied to achieve improved guarantees in the multi-agent learning setting. The proof of our upper bound uses a new technique centered around an adaptive choice of potential function at each iteration. We also show that the O(1/T‾‾√) rate is tight for all p-SCLI algorithms, which includes OG as a special case. As a byproduct of our lower bound analysis we additionally present a proof of a conjecture of Arjevani et al. (2015) which is more direct than previous approaches. 
    more » « less