As students read textbooks, they often highlight the material they deem to be most important. We analyze students’ highlights to predict their subsequent performance on quiz questions. Past research in this area has encoded highlights in terms of where the highlights appear in the stream of text—a positional representation. In this work, we construct a semantic representation based on a state-of-the-art deep-learning sentence embedding technique (SBERT) that captures the content-based similarity between quiz questions and highlighted (as well as non-highlighted) sentences in the text. We construct regression models that include latent variables for student skill level and question difficulty andmore »
Using semantics of textbook highlights to predict student comprehension and knowledge retention
As students read textbooks, they often highlight the material they deem to be most important. We analyze students’ highlights to predict their subsequent performance on quiz questions. Past research in this area has encoded highlights in terms of where the highlights appear in the stream of text—a positional representation. In this work, we construct a semantic representation based on a state-of-the-art deep-learning sentence embedding technique (SBERT) that captures the content-based similarity between quiz questions and highlighted (as well as non-highlighted) sentences in the text. We construct regression models that include latent variables for student skill level and question difficulty and augment the models with highlighting features. We find that highlighting features reliably boost model performance. We conduct experiments that validate models on held-out questions, students, and student-questions and find strong generalization for the latter two but not for held-out questions. Surprisingly, highlighting features improve models for questions at all levels of the Bloom taxonomy, from straightforward recall questions to inferential synthesis/evaluation/creation questions.
- Editors:
- Sosnovsky, S.; Brusilovsky, P; Baraniuk, R. G.; Lan, A. S.
- Award ID(s):
- 1631428
- Publication Date:
- NSF-PAR ID:
- 10299595
- Journal Name:
- Proceedings of the Third International Workshop on Intelligent Textbooks (iTextbooks)
- Page Range or eLocation-ID:
- 108-120
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When engaging with a textbook, students are inclined to highlight key content. Although students believe that highlighting and subsequent review of the highlights will further their educational goals, the psychological literature provides no evidence of benefits. Nonetheless, a student’s choice of text for highlighting may serve as a window into their mental state—their level of comprehension, grasp of the key ideas, reading goals, etc. We explore this hypothesis via an experiment in which 198 participants read sections from a college-level biology text, briefly reviewed the text, and then took a quiz on the material. During initial reading, participants were ablemore »
-
We investigate whether student comprehension and knowledge retention can be predicted from textbook annotations, specifically the material that students choose to highlight. Using a digital open-access textbook platform, Openstax, students enrolled in Biology, Physics, and Sociology courses read sections of their introductory text as part of required coursework, optionally highlighted the text to flag key material, and then took brief quizzes as the end of each section. We find that when students choose to highlight, the specific pattern of highlights can explain about 13% of the variance in observed quiz scores. We explore many different representations of the pattern ofmore »
-
This study examined the difficulty introduced by spaced retrieval practice in Calculus I for undergraduate engineering students. Spaced retrieval practice is an instructional technique in which students engage in multiple recall exercises on the same topic with intermittent temporal delays in between. Spacing out retrieval practice increases the difficulty of the exercises, reducing student performance on them. However, empirical research indicates that spaced retrieval practice is associated with improvements in students’ long-term memory for the retrieved information. The short-term costs and long-term benefits of spaced retrieval practice is an example of desirable difficulty, when more difficult exercises during the earlymore »
-
1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to amore »