skip to main content


Title: A new nonstationary preconditioned iterative method for linear discrete ill‐posed problems with application to image deblurring
Abstract

Discrete ill‐posed inverse problems arise in many areas of science and engineering. Their solutions are very sensitive to perturbations in the data. Regularization methods aim at reducing this sensitivity. This article considers an iterative regularization method, based on iterated Tikhonov regularization, that was proposed in M. Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods for ill‐posed problems, with application to image deblurring,Inverse Problems, 29 (2013), Art. 095008, 16 pages. In this method, the exact operator is approximated by an operator that is easier to work with. However, the convergence theory requires the approximating operator to be spectrally equivalent to the original operator. This condition is rarely satisfied in practice. Nevertheless, this iterative method determines accurate image restorations in many situations. We propose a modification of the iterative method, that relaxes the demand of spectral equivalence to a requirement that is easier to satisfy. We show that, although the modified method is not an iterative regularization method, it maintains one of the most important theoretical properties for this kind of methods, namely monotonic decrease of the reconstruction error. Several computed experiments show the good performances of the proposed method.

 
more » « less
Award ID(s):
1720259
NSF-PAR ID:
10453751
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Numerical Linear Algebra with Applications
Volume:
28
Issue:
2
ISSN:
1070-5325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many inverse problems involve two or more sets of variables that represent different physical quantities but are tightly coupled with each other. For example, image super-resolution requires joint estimation of the image and motion parameters from noisy measurements. Exploiting this structure is key for efficiently solving these large-scale optimization problems, which are often ill-conditioned. In this paper, we present a new method called Linearize And Project (LAP) that offers a flexible framework for solving inverse problems with coupled variables. LAP is most promising for cases when the subproblem corresponding to one of the variables is considerably easier to solve than the other. LAP is based on a Gauss–Newton method, and thus after linearizing the residual, it eliminates one block of variables through projection. Due to the linearization, this block can be chosen freely. Further, LAP supports direct, iterative, and hybrid regularization as well as constraints. Therefore LAP is attractive, e.g., for ill-posed imaging problems. These traits differentiate LAP from common alternatives for this type of problem such as variable projection (VarPro) and block coordinate descent (BCD). Our numerical experiments compare the performance of LAP to BCD and VarPro using three coupled problems whose forward operators are linear with respect to one block and nonlinear for the other set of variables. 
    more » « less
  2. Abstract

    We propose a regularization-based deblurring method that works efficiently for galaxy images. The spatial resolution of a ground-based telescope is generally limited by seeing conditions and is much worse than space-based telescopes. This circumstance has generated considerable research interest in the restoration of spatial resolution. Since image deblurring is a typical inverse problem and often ill-posed, solutions tend to be unstable. To obtain a stable solution, much research has adopted regularization-based methods for image deblurring, but the regularization term is not necessarily appropriate for galaxy images. Although galaxies have an exponential or Sérsic profile, the conventional regularization assumes the image profiles to behave linearly in space. The significant deviation between the assumption and real situations leads to blurring of the images and smoothing out the detailed structures. Clearly, regularization on logarithmic domain, i.e., magnitude domain, should provide a more appropriate assumption, which we explore in this study. We formulate a problem of deblurring galaxy images by an objective function with a Tikhonov regularization term on a magnitude domain. We introduce an iterative algorithm minimizing the objective function with a primal–dual splitting method. We investigate the feasibility of the proposed method using simulation and observation images. In the simulation, we blur galaxy images with a realistic point spread function and add both Gaussian and Poisson noise. For the evaluation with the observed images, we use galaxy images taken by the Subaru HSC-SSP. Both of these evaluations show that our method successfully recovers the spatial resolution of the deblurred images and significantly outperforms the conventional methods. The code is publicly available from the GitHub 〈https://github.com/kzmurata-astro/PSFdeconv_amag〉.

     
    more » « less
  3. Summary

    In this paper, we propose an efficient numerical scheme for solving some large‐scale ill‐posed linear inverse problems arising from image restoration. In order to accelerate the computation, two different hidden structures are exploited. First, the coefficient matrix is approximated as the sum of a small number of Kronecker products. This procedure not only introduces one more level of parallelism into the computation but also enables the usage of computationally intensive matrix–matrix multiplications in the subsequent optimization procedure. We then derive the corresponding Tikhonov regularized minimization model and extend the fast iterative shrinkage‐thresholding algorithm (FISTA) to solve the resulting optimization problem. Because the matrices appearing in the Kronecker product approximation are all structured matrices (Toeplitz, Hankel, etc.), we can further exploit their fast matrix–vector multiplication algorithms at each iteration. The proposed algorithm is thus calledstructuredFISTA (sFISTA). In particular, we show that the approximation error introduced by sFISTA is well under control and sFISTA can reach the same image restoration accuracy level as FISTA. Finally, both the theoretical complexity analysis and some numerical results are provided to demonstrate the efficiency of sFISTA.

     
    more » « less
  4. This article presents a numerical strategy for actively manipulating electromagnetic (EM) fields in layered media. In particular, we develop a scheme to characterize an EM source that will generate some predetermined field patterns in prescribed disjoint exterior regions in layered media. The proposed question of specifying such an EM source is not an inverse source problem (ISP) since the existence of a solution is not guaranteed. Moreover, our problem allows for the possibility of prescribing different EM fields in mutually disjoint exterior regions. This question involves a linear inverse problem that requires solving a severely ill-posed optimization problem (i.e. suffering from possible non-existence or non-uniqueness of a solution). The forward operator is defined by expressing the EM fields as a function of the current at the source using the layered media Green’s function (LMGF), accounting for the physical parameters of the layered media. This results to integral equations that are then discretized using the method of moments (MoM), yielding an illposed system of linear equations. Unlike in ISPs, stability with respect to data is not an issue here since no data is measured. Rather, stability with respect to input current approximation is important. To get such stable solutions, we applied two regularization methods, namely, the truncated singular value decomposition (TSVD) method and the Tikhonov regularization method with the Morozov Discrepancy Principle. We performed several numerical simulations to support the theoretical framework and analyzes, and to demonstrate the accuracy and feasibility of the proposed numerical algorithms. 
    more » « less
  5. Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting ill-posed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-point proximity algorithm to solve the optimization problem. Convergence analysis is provided for the resulting iterative algorithm. Numerical experiments demonstrate the superiority of the proposed method over several existing methods in terms of both suppressing noise and reducing computational costs. These methods include the SART without regularization and with the quadratic regularization, the traditional total variation (TV) regularized reconstruction method and the TV superiorized conjugate gradient method on the pixel grid. 
    more » « less