Title: Toward Generation of Orbital-Angular-Momentum-Entangled Photon Pairs in a Few-Mode Fiber
We describe a novel scheme for generation of orbital-angular-momentum-entangled photons in a few-mode fiber. We experimentally verify the underlying inter-modal parametric processes with two-mode classical signal input, observing high mode purity of the generated idler. more »« less
Aiming at producing spatial-mode-entangled photon pairs in a few-mode fiber, we experimentally demonstrate generation of idler beam from a seed signal in a superposition of two fiber modes. For every signal mode superposition, we observe the indication of idler mode orthogonality to the signal mode.
We describe a novel scheme for spatial-mode-entangled photon-pair generation in a few-mode fiber. We experimentally verify the underlying inter-modal parametric processes with two-mode classical signal input and demonstrate high mode purity of the generated idler.
Smith, J.; Wang, I.; Wei, W.; Woodward, J.; Ruiz, J.
(, International Conference on Advanced Visual Interfaces)
Mode switching allows applications to support a wide range of operations (e.g. selection, manipulation, and navigation) using a limited input space. While the performance of different mode switching techniques has been extensively examined for pen- and touch-based interfaces, investigating mode switching in augmented reality (AR) is still relatively new. Prior work found that using non-preferred hand is an efficient mode switching technique in AR. However, it is unclear how the technique performs when increasing the number of modes, which is more indicative of real-world applications. Therefore, we examined the scalability of non-preferred hand mode switching in AR with two, four, six, and eight modes. We found that as the number of modes increase, performance plateaus after the four-mode condition. We also found that counting gestures have varying effects on mode switching performance in AR. Our findings suggest that modeling mode switching performance in AR is more complex than simply counting the number of available modes. Our work lays a foundation for understanding the costs associated with scaling interaction techniques in AR.
Gavitte, Samuel B; Koretsky, Milo D; Nason, Jeffrey A
(, Journal of Computing in Higher Education)
Laboratory activities are central to undergraduate student learning in science and engineering. With advancements in computer technology, many laboratory activities have shifted from providing students experiments in a physical mode to providing them in a virtual mode. Further, physical and virtual modes can be combined to address a single topic, as the modes have complementary affordances. In this paper, we report on the design and implementation of a physical and virtual laboratory on the topic of jar testing, a common process for drinking water treatment. The assignment for each laboratory mode was designed to leverage the mode’s affordances. Correspondingly, we hypothesized each would elicit a different subset of engineering epistemic practices. In a naturalistic, qualitative study design based on laboratory mode (physical or virtual) and laboratory order (virtual first or physical first), we collected process, product, and reflection data of students’ laboratory activity. Taking an orientation that learning is participation in valued disciplinary practice, data were coded and used to characterize how students engaged with each laboratory mode. Results showed that the virtual laboratory elicited more conceptual epistemic practices and the physical laboratory more material epistemic practices, aligning with the affordances of each mode. When students completed the laboratory in the virtual mode first, students demonstrated greater engagement in epistemic practices and more positive perceptions of their learning experience in the virtual mode than when they completed the physical mode first. In contrast, engagement in the physical mode was mostly unaffected by the laboratory order.
Menietti, J. D.; Yoon, P. H.; Averkamp, T. F.; Kurth, W. S.; Faden, J. B.; Allegrini, F.; Kollmann, P.; Bolton, S. J.
(, Journal of Geophysical Research: Space Physics)
We report some of the most intense Z‐mode and O‐mode observations obtained by the Juno spacecraft while in orbit about Jupiter in a low to mid‐latitude region near the inner edge of the Io torus. We have been able to estimate the density of the plasma in this region based on the lower frequency cutoff of the observed Z‐mode emission. The results are compatible with the electron density measurements of the Jovian Auroral Distributions Experiment (JADE), on board the Juno spacecraft, if we account for unmeasured cold plasma. Direction‐finding measurements indicate that the Z‐ and O‐mode emission have distinct source regions. We have also used the measured phase space density of the JADE and the Jupiter energetic particle detector instruments to calculate estimated local growth rates of the observed O‐mode and Z‐mode emission assuming a loss cone instability and quasilinear analysis. The results suggest the emissions were observed near, but not within, a source region, and the free energy source is consistent with a loss cone. We have thus carried out the quasilinear wave analysis of the assumed remote Z‐ and O‐mode wave growths. It is shown that the remotely generated waves, propagated through an inhomogeneous medium to the satellite location, may account for the observed wave characteristics. The importance of Z‐mode in accelerating electrons in the inner Jovian magnetosphere makes these new wave mode confirmations at Jupiter of particular interest.
Shamsshooli, Afshin, Guo, Cheng, Parmigiani, Francesca, Li, Xiaoying, and Vasilyev, Michael.
"Toward Generation of Orbital-Angular-Momentum-Entangled Photon Pairs in a Few-Mode Fiber". Frontiers in Optics 2020 (). Country unknown/Code not available. https://doi.org/10.1364/FIO.2020.FM1D.2.https://par.nsf.gov/biblio/10299866.
@article{osti_10299866,
place = {Country unknown/Code not available},
title = {Toward Generation of Orbital-Angular-Momentum-Entangled Photon Pairs in a Few-Mode Fiber},
url = {https://par.nsf.gov/biblio/10299866},
DOI = {10.1364/FIO.2020.FM1D.2},
abstractNote = {We describe a novel scheme for generation of orbital-angular-momentum-entangled photons in a few-mode fiber. We experimentally verify the underlying inter-modal parametric processes with two-mode classical signal input, observing high mode purity of the generated idler.},
journal = {Frontiers in Optics 2020},
author = {Shamsshooli, Afshin and Guo, Cheng and Parmigiani, Francesca and Li, Xiaoying and Vasilyev, Michael},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.